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Abstract

In robotic tasks where the manipulator has to make
transition from free space motion to constrained one,
there always exists an inevitable phase transition. A
number of controllers have been proposed in the liter-
ature with various discussions on their practical impli-
cations. In this paper first a discussion on the nature
of the structure of a practical contact transition con-
troller is presented. Then a novel framework which
can be used toward studying and analysis of such con-
trollers for robotic contact tasks problem is proposed.
This framework presents a natural set-up to study the
performance of the controller. The framework is based
on the Flippov’s notion of differential inclusion and a
definition of the smooth Lyapunov function.

1. Introduction

Various initiatives have been focused on the develop-
ment of control laws which can result in an stable con-
troller for the manipulator during the transition from
free motion to constrained motion. Kazerooni [1] pro-
posed a controller based on the notion of impedance
control where the closed-loop dynamics of the manip-
ulator 1s matched with a target dynamics with compli-
ance properties. The stability of the controller is then
investigated based using the small gain theorem. Mills
[2] proposed a discontinuous controller and discussions
on its performance based on the notion of the general-
ized dynamical systems. In this scheme, the environ-
ment is modeled as a spring and damper (a compliant
model of the environment [6]). A practical approach
for controlling the contact transition was proposed by
Payandeh [3][12]. In this method, the gains of the con-
troller are switched during different phases of motion
to achieve a stable contact force regulation. Several
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methods for controlling the transition from free mo-
tion to constrained motion with the objective on min-
imizing fingertip load oscillation during transition was
investigated by Hyde and Cutkosky[4]. A suitable con-
troller based on the input command shaping was then
proposed. Using one degree of freedom manipulator,
experiments were performed to demonstrate the stable
performance of the controller. Marth, Tarn and Bejczy
[5] proposed a model-based algorithm combined with
explicit force control to regulating the phase transition.
The force controller is switched on when the contact
is established. The stability results were presented for
the impact phase of the manipulator with the rigid
environment. The non-collocation effects between sen-
sors and actuators have been studied in [7], [8]. A
thorough study of force robotic force controllers has
been provided in [9], [10]. A more complete review of
various impact models and controllers are also given

in[11].

As correctly discussed by Kazerooni, Mills and Payan-
deh, in contact transition, the dynamics of the closed-
loop system changes and the external contact force
measurements which was omitted as a part of feed-
back control system in the free motion is now a part
of the controller. However, the methodology of using
the force signal as a natural indication of the contact
phenomenon has been incorporated in different ways.
Mills has use the force signal to switch the controller
from the position control PD mode to the force con-
trol PD mode. While Kazerooni used the force signals
as a part of the feedback loop while maintaining the
structure of the controller unchanged (i.e. impedance
control). In this way, the position controller can also
be used as a force control through the impedance pa-
rameterization. Payandeh has used the measure of the
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Figure 1: Simulation results of an ideal 1DOF manipula-
tor when interacting with a rigid environment
with various degrees of compliance.

instant of contact to change the gains of the controller
while maintaining the structure of the robust controller
fixed during the phases of free motion, impact and con-
strained motion.

The paper is organized as follows: section (2) presents
an overview of modelling of physical systems which re-
sults in an implementation of a bounce-less contact
transition controller; in section (3) presents smooth
stability analysis of the non-smooth system using
IDOF example and finally section (5) presents con-
cluding remarks.

2. Implementation of a bounce-less Controller

In general in has been realized that to accomplish
a practical bounce-less controller in robotic contact
tasks, there has to exist some compliance either in
the structure of the manipulator (e.g. structural flex-
ibility), in the contacting environment (e.g. compli-
ant environment) or in the closed-loop controller (e.g.
stiffness controller). This presence of compliance ei-
ther in the contacting environment or in the manipu-
lator structure can reduce the effective impulsive forces
which arises due to the collision between two solid
bodies[14]. The advantages of the presence of com-
pliance has been shown both analytically and experi-
mentally, see for example, [1], [2], [6],[13], [9], [10] and
[11]. This in effect reduces the contact dynamic from
the infinite mode to a finite mode and can reduce (elim-
inate) the number of bounces. For example, Figure (1)
shows a simulated response of an ideal IDOF manip-
ulator when approaching a stiff environment with the
presence of various degree of compliance.

In general, compliance in the contacting bodies (either
in the environment or manipulator) allows the increase

in the closed-loop bandwidth and hence increasing the
bounds of the controller gains [8]. For example, Figure
(2) and (3) show the actual response of a 2DOF ma-
nipulator when approaching a rigid environment with
an identical controllers. It can be seen for the case
where there is no dominant compliance presence, the
manipulator bounces from the contacting environment
(positive value of approximately 1 Ibf represents the
non-contact phase, any value less than this represents
the contact phase). Detailed structure of this controller
can be found in [3].

In the following, 1DOF stability analysis of this type of
controller is proposed based on the Flippov’s notion of
the differential inclusions and smooth Lyapunov func-
tion candidate.
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Figure 2: Contact force response of the manipulator dur-
ing the impact phase in the case where no dom-
inant compliance is introduced(sampling fre-
quency of 2500HZ).
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Figure 3: Contact force response of the manipulator dur-
ing the impact phase having the same approach
velocity of that of figure (2) with the introduc-
tion of dominant source of compliance.

3. Toward Smooth Analysis of a Non-Smooth
System

Let us consider a one dimensional compliant mecha-
nism with the actuation force. The dynamic equation
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Figure 4: Definition of the variables associated with the
one-dimensional example

of the system in an unconstrained phase can be written
as:
mi(t) = —r + u(t)" (1)

where for this case the reaction force from the envi-
ronment during the contact phase is zero, or r = 0.
The dynamic equation of this system in contact with
a rigid environment can be written as:

mi(t) = —r+ u(t)2 (2)

where r = k(28 — 2* + z) for 2* — 2 < 2 is the
reaction force acting on the mass due to interaction
with the rigid environment and the k. is a model of
compliant. Figure (4) shows all the position variables
involved.

Let us now define a controller for both contact and
non-contact phases of the mechanism of the form:

_{ u(t)! = —kp(z — 29 — kg , 7 <0
u(t) = 2 _ d - d
u(t)? = —kpr(r—r®) —kgr+r*,7>0
(3)
, &% is the desired trajectory of the end-point
and r? is the desired contact force to be exerted on
the environment (i.e. z¢ is generated through an ex-
ploratory planning strategy to located the unknown
environment). At the instant when the contact is de-
tected, the controller regulates the desire contact force
specified by r?. By taking into account the relation-
ship between the contact force and the state variables
of the mechanisms, the controller u(¢)? can be written
as:

where z¢

u(t)? = kprke(z — 2% — kgked + (4)

In general, the dynamic equations describing the model
of the object in both regions are discontinuous as the
object contacts the environment. The discontinuity
arises from the presence of the contact force from the
environment as well as the nature of the controller.
Such a dynamical system is called a non-smooth dy-
namical system. The conventional solution theories to
differential equations are no longer valid for these type
of systems. Filippov proposed a solution concept for

non-smooth systems(referred to here as Filippov’s so-
lution). The properties of these solutions were studied
systematically which included a comparison between
Filippov’s solution and conventional solution and also
theorems on the existence and uniqueness of the solu-
tions. In this work, Filippov’s solution concept is used
and existence and uniqueness of the solution proven
followed by stability analysis.

3.1. Existence and Uniqueness of Filippov’s So-
lution

The two dynamic models of the system in both regions
can be written in term of the state space model (as-
suming z; = z):

([l)i‘l = X9

(b)ds = -&+48 ©)

The right-hand side of the equation (5b) is discontin-
uous. The discontinuity surface can be represented as
follows:

S :={(x1,z2), 21 — " + z{, =0} (6)

Equation (6) represents the contact surface between
the manipulator and environment.

We apply Flippov’s solution theory to prove the exis-
tence and uniqueness of the solution to the proposed
system shown in equation (5b). The right-hand side of
the equation (5b) is piecewise continuous. The condi-
tions for existence and continuity of the Flippov’s so-
lution, such as the right-hand sides of equations(5) are
measurable and bounded, are both satisfied. Thus, the
existence and continuity of the solutions to equations
(5) are guaranteed.

We are to prove the uniqueness of the solution to our
system. The solution region €2 is divided by the discon-
tinuity surface S into two parts, Q% := {(z1,23) 1 z —
z* +x¢ > 0} where the manipulator is in contact with
the environment, and Q7 := {(z1, z2) : z—2*+2¢ < 0}
where 1t is in free motion. The right-hand side of equa-
tion (5) in both regions are f* and f~ which are de-
fined as: ft =.

{ (—ke(z1 — z) — kpfki;zrl —zd) - kagkers)/m }
/7= { (—kp(21 — 93:32) — kqz3)/m
(7)

According to Lemma 9 of Flippov[15], the projection
of fT and f~ along the normal to the discontinuity
surfaces, which is defined as Ny, N, = {1,0}7, need
to be examined. Such projections are denoted by fj\i}
and fy, respectively. For example under study, we



have that fjl\} = fy = x2. Since fj\", and fy have
the same sign, the uniqueness of Flippov’s solution for
equation (5) is guaranteed. Furthermore, when z3 > 0,
the solution trajectory goes from Q~ to Q1 and has
only one point in common with S. When z5 < 0,
the solution trajectory goes from Q%1 to Q= and has
only one point in common with S. In summary, the
existence and uniqueness of Flippov’s solution for the
non-smooth control system described by equation (5)
are proved.

3.2. Stability Analysis

Lyapunov’s stability theory was developed for smooth
dynamic systems. The extensions of Lyapunov’s sta-
bility theory to non-smooth dynamic systems, has been
previously studied by Solncev[16], Hahn[17], and She-
vitz and Paden[18]. Their extensions were based on the
belief that non-smooth Lyapunov function arise natu-
rally for non-smooth systems. Another recent exten-
sion was developed by Wu et. al[19] , in that condi-
tions for the construction of smooth Lyapunov func-
tions for classes of non-smooth dynamic system were

established.

Assuming e; = z1 — z¢, the state-space model can be

written as:
€1 =

(8)

|M
SN

€y = 1+—62

and .

€1 = €9

. 9

ey = —#(1{7 —|—1)€1— kﬂkceg ( )
Equations (8) and (9) describe the manipulator in both
non-contact region and contact region, respectively.
The discontinuity surface is defined as:

S = {(61,62);61—}-1‘(1—‘;-332—1‘*20} (10)
When e € QF, the manipulator is in contact with the
environment and when e € 7, the manipulator 1s not
in contact with the environment. A Lyapunov function
is now constructed in each region as:

Vi=Led 4 dned 4 Gortlhehn (gr _ge  pd)2
V= for (e € Q™)

Vo =1e2 4 Bcblp o2 (e € QF)

Vs =2e2 + Ectlp e? (e €S)

(1)
Function V' is positive through the entire region under
the condition that (k,; + 1)k. — k, > 0. Function V
is definite since V' = 0( i.e. Va2 = 0) if and only if
e1 = 0 and ey = 0. Function V is continuous on the
discontinuity surface. This can be shown as follow:
limx—>5— Vi=

]fpf—l—l

kc * _ ¢ ,.d\2
N

2
e5+

1
lz'mel_,(xdﬂz_x*)_v = 5

limx—>5+ V2 -

1 kp
lzm d c _p*x +V9 = = 2 2
e1—>(zdtzs—z*) 9 €5 .2
or: lim, ,s+Va = 13 + 2:; ke(z* — 28 — z9)%

From the above two equations, we can see that as
the solution trajectory approaches the discontinuity
surface, lim,_,5-V1 = lim.,5+Va = V3 (note that
e1 = ¥ — 2% —z? on the discontinuity surface). There-
fore, the Lyapunov function in equation (11) is contin-
uous on the discontinuity surface. The derivative of

the above Lyapunov function with respect to time is:

. Vi = —kge for, (e € Q7)
V= . 5 +
Vo = —kaskces for, (e € Q1)

Vis negative in both non-contact and contact regions.

On the discontinuity surface where e; = z* — x¢ — 29,

we have V(e € S):

Accordingly, Flippov’s differential inclusion is:

K[fl(e € 5):
60{[ _%P(a:*—:t:;z—l’d)_ e ] ’

€2
ey (o — wf — 2) = Bkees | [
Let {¢, ea} be an arbitrary element of 9V (e € S), then:

Vees) e (] {&edK[fle€s)

{€,e2}€dV

Let us denote that K[V] = {¢,es} K[f](e € S). We

have to prove that all the elements of (¢, . ycov K[V]
Therefore, V(e € S)is

are either negative or zero.
either negative or zero.

The set K[V] can be rewritten as follows:

KIV] = cofes(6 — 2 (% — 2, — 2%) — 23
ea(6 = 2L (07 — a8 — o) - K g2
or,
KIV) = [eal€ — 22 (% — a5, - 2) — 22},
eale — " by (0 25— 2®) - Wk



and
VieesS)e () K[V

{€,e2}€dV

Here we only prove one special case that e; > 0. For
es < 0, similar proof can be applied. Since (kp; +
1)k. — k, > 0, we have:

kp

k. +1
22 (g —af, —2f) <€ <
m m

by (% — 2, — )
Thus, the following relations hold:

6—%’(1‘*—1‘%—33(1) >0
e- Bty o —ar Zat) <0

m

If kg = karke, Nieeoyeav KIVI€) = {—%2€3}, that is
set (¢ e,reov K[V](€) contains only one element as

—%462 Thus, V(e € S) = —&2¢2, which is negative.
From the above discussion, we can see that V is either
negative or zero through the whole region. Thus the

control system is stable.
4. Conclusions and Future Work

This paper present some basic experimental results in
implementing a contact task controller. The controller
takes advantage of a source of compliance which is
present in the manipulating system. The overall con-
troller consists of a collection of the controllers where
they can be switched as a function of force signal mea-
surements, time or state preconditions. A novel stabil-
ity results of this contact task controller for the case of
1DOF system are presented. The framework is based
on the notion of the Flippov’s differential inclusion and
the definition and the construction of the smooth Lya-
punov function. The future work involves extension of
this 1IDOF analysis to the case of non-smooth multi-
degree of freedom dynamical systems.
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