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Abstract

Generally, in most dexterous manipulation tasks the manipulator undergoes a tran-

sition from free motion to contact con�guration with its environment. An example can

be the exploratory unconstrained motions of the force guided manipulator for estab-

lishing contact with an environment. This transition usually involves the impact stage.

The impact usually results in an unstable performance of the closed-loop controller of

the manipulator. One of the main remedies to achieve a stable closed-loop control of

the manipulator is to introduce some compliance property into the closed-loop system

(i.e. through hardware or through feedback control laws) [3], [8] , [4]. Based on the

Second Method of Lyapunov and the theory of guaranteed stability of uncertain sys-

tems, this paper presents results on showing the e�ect of compliance in increasing the

stability bounds of the manipulator during the impact phase. The paper also presents

discussions on how the e�ect of compliance in the model of mechanical manipulator

can be studied in the closed-loop stability. Experimental results are also presented to

demonstrate the e�ect of compliance in the stable response of the manipulator during

the impact phase.

1 Introduction

Various methodologies have been proposed in the literature for stable control of the robotic

manipulator during its phase transition from free to constrained motions. One of the main

conclusions for stable control of such transition has been suggested to be the presence of

some compliant properties[3], [8] , [4]. These properties can be introduced either in the

construction of the robotic manipulator or can be created through the feedback control laws.

This paper discusses the motivation of having compliant properties for stable control of

robotic mechanisms during the impact with the environment.
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There have been various remedies for designing of a stable impact controller. For example,

Parker and Paul (87) [1] discussed that the compressibility property of air in pneumatic

actuation and incorporation of velocity feedback can reduce the e�ect of impact and results

in an stable performance. Youcef-Toumi and Gutz (89) [2] modelled the impact dynamics

and suggested that for stable control of impact, velocity feedback can be used to create

and active damping during the impact phase with the added integral force control. Using

the notion of impedance control, Kazerooni, Waibel and Kim (90) [3] created an active

impedance in their closed-loop control system. They also veri�ed analytically that for stable

control, there must exist some compliant properties either in the manipulator or in the

environment. Volpe and Khosla (91) [4] experimentally veri�ed that during the impact

phase, proportional gain explicit force controller can be used to suppress oscillation (i.e.

active compliance property). Recently, Hyde and Cutkosky (94) [5] experimentally compared

various impact control strategies on a manipulator with compliant �nger-tip and suggested

an approach based on the input-shaping to increase the stability bounds. A compliant model

of the manipulator in contact with the rigid environment has been proposed in [6]. Results

concerning the e�ect of compliance in reducing the loop-gain of a robust controller are given

in [7]. Also, experimental observation regarding the importance of compliance in stability

of the controller in robotic impact task is presented in [8]. This paper presents results on

e�ect of compliance in the closed-loop stability of the robotic impact task controller. The

results are obtained based on the Second Method of Lyapunov and the theory of guaranteed

stability of uncertain systems developed by [11].

The paper is organized as follows: section (2) presents some preliminaries in regard to

the closed-loop modelling of the manipulator; section (3) presents the stability results on the

e�ect of compliance with some experimental investigation and �nally section (4) presents

concluding remarks.

2 Closed-loop Modelling

This section presents review of a robust force controller of a model of manipulator in contact

with a rigid environment. The contact between the manipulator and the environment is

modeled as a compliant contact. The source of compliance is assumed to arise from a

passive material (or device) attached to the end-point of the manipulator.

Let the nonlinear model of the manipulator in contact with the environment be given as:

M�
�� + h(�; _�) + g(�; _�; ��) = � (t)� JTR (1)

whereM� is the inertia matrix, h(�; _�) is a vector of centrifugal, Coriolis and gravity forces,

g(�; _�; ��) is a vector of uncertainties and disturbances, and R is the contact force exerted on

the environment.

Expressing the above equation in the end-point reference frame (e.g. a frame where the
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normal to the contacting surface is co-linear with the z�axis) using the following identities:

_�x = J _�

� = J
TF

�� = J
�1��x� J�1 _J _�

where J is a mapping from the joint coordinates of the manipulator to the end-point coor-

dinates �x. Substituting the above identities into equation (1), we have:

M�x
��x+ h�x + g�x = F �R (2)

where:
M�x = J

T
M�J

�1

h�x = J
�Th(�; _�)�M�x

_J _�

g�x = J
�T g(�; _�; ��)

Let a non-linear model-based controller be given as:

F =M�xF
0

+ h�x + g�x +R (3)

(here we are assuming that the exact knowledge of the model and uncertainties are know).

De�ning F
0

as:

F
0

= F � _R �R (4)

The contact force as a function of the compliance of the end-point of the manipulator can

be written as:[7]

R = Kc(�x� �xw) (5)

where Kc is a matrix de�ning the compliance property of the end-point. �xw is the distance

from the end-point of the manipulator at the initial contact with the environment.

Substituting (3) and (4) into (2) and noting ��x = K
�1
c
R, we have:

�R+Kc
_R +KcR =KcF (6)

In the case where the exact model parameters of the manipulator are not available and

there are uncertainties and disturbances acting on the manipulator, the model-based con-

troller of equation (3) can be written as:

F = ~M�xF
0

+ ~h�x + ~g�x + ~R (7)

where ~M�x is an estimate of the inertia matrix, ~h�x is an estimate of the Coriolis and gravity

force vector and ~g�x is an estimate of the disturbances and uncertainties. ~R is a measure of

the actual contact force vector. In the above equation F
0

is de�ned as:

F
0

=
h
( �Rr � _Re �Re)=Kc + F

i
(8)

where Re = R�Rr. Here (:)r stands for reference parameters. F is the robust force controller

which will be de�ned later.
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Substituting equations (8) and (7) and then into the open-loop dynamics, we obtained

the following,

�
h
( �Rr � _Re �Re)=Kc + F

i
= � ~M�1

�x
M�x

��x+ ~M�1
�x

h
(~h�x � h�x) + (~g�x � g�x) + ( ~R�R)

i
(9)

adding ��x to both side and incorporating the relationship of the end-point compliance of the

manipulator (equation 5), we obtain:

�Re + _Re +Re �KcF =

Kc
~M�1

�x
(M�x � ~M�x)��x+Kc

~M�1
�x

h
(~h�x � h�x) + (~g�x � g�x) + ( ~R�R)

i
or,

�Re + _Re +Re = KcF +KcW (10)

where the uncertainty W is de�ned as:

W = ~M�1
�x
(M�x � ~M�x)��x+ ~M�1

�x

h
(~h�x � h�x) + (~g�x � g�x) + ( ~R �R)

i
The above equation can be put in the following state-space form:

_x = Ax+Bu+BW ; y = Cx (11)

where x = (Re; _Re)T and B contains the complaint model of the end-point.

Combining the above with a model of the auxiliary dynamics, of the form:[10]

_� = �� + �Re (12)

(the above equation is used to model the exogenous inputs which can act on the system. the

poles of these models are all located on the right hand side of the imaginary axis [9]). We

then obtain the following combined dynamics:(
_x
_�

)
=

"
A 0

�C �

#(
x

�

)
+

"
B

0

#
u+

"
B

0

#
W

where the output y is de�ned as:

y =
h
C 0

i ( x

�

)

or we can write:

_z = �Az + �Bu+ �BW (13)

In the following, the e�ect of impact force � which is an impulsive force having a

large(bounded) amplitude and with very short duration is assumed to be modelled as an

additive component to the contact force R or R = R + �. Following similar derivation as

above, the dynamics of the system by including the additive impact term can be written as:

_z = �Az + �Bu+ �B� + �B�� (14)
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where �� is refer to as the �rst stage reduction of the e�ect of impact force through the inverse

of the mass matrix or �� = ~M�1
�x
�.

The objective is now to design an additional control input u which can result in the

closed-loop system to be stable in the presence of bounded uncertainties de�ned by W (i.e.

kWk � �)[12] and the presence of impact force �.

Let us now de�ne a controller of the form:

u = Kz + p (15)

here the gain matrix K are chosen such that it stabilizes the unstable poles of the systems

de�ned in equation (11) and the unstable poles of the auxiliary dynamics de�ned in equation

(12). the controller input p is de�ned as :[11]

p =

8>><
>>:

�
�BTPz

k �BTPzk
� if k �BT

Pzk > �

�
�BTPz

�
� if k �BT

Pzk � �

(16)

where � is a small positive number determined by the designer. P is a positive de�nite

symmetric matrix representing the solution to the following Lyapunov equation for some

Q > 0,

P �A + �AT
P = �Q (17)

3 Stability Analysis

In the previous section a model of the manipulator combined with the model auxiliary

dynamics was presented in the context of uncertain dynamical system. In this section, the

stability of the closed-loop system is presented. First, the stability of the controller in the

absence of impulsive force which arises from the collision between the manipulator and the

environment is presented. Second, it is shown how the complaint property of the manipulator

can a�ect the sensitivity of the closed-loop to the input impulse force and the closed-loop

stability.

Let us consider the Lyapunov function candidate of the form:

V = zTPz (18)

implementing the controller de�ned in (15) into equation (13), the derivative of the Lyapunov

function candidate along the solution trajectory can be written as:[12]

_V = _zTPz + zTP _z

= �zTQz + 2�T (u+W )

� ��min(Q)kzk2 + 2�T (u+W )

(19)

where we de�ned � = ( �BT
Pz). By Rayleigh's principle, and noting that Q is chosen as a

positive de�nite matrix, we have �min(Q) � zTQz and �min > 0.
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Let us now consider the controller of equation (16), for k�k > �. In equation (19) we can

write:
�T (u+W ) = �T (���

k�k
+W )

= �T (���
k�k

) + �TW

� k�T (���
k�k

)k+ k�TWk

= �k�k� + k�k� = 0

(20)

for k�k � � we have:

�T (u+W ) = �T (���
�

+W )

� �T (���

�
) + k�k�

= �k�k2�=� + k�k�

= (�k�k2=�+ k�k)�

(21)

the maximum value of the above is when k�k = �=2. Therefore,

_V � ��min(Q)kzk2 + ��=2 (22)

as a result we can have _V < 0.

During the impact phase we assumed that the e�ect of impact force can be represented

as an additive component to the contact force. Using the model given in equation (14), the

controller given in equation (15) and the Lyapunov function candidate, the rate of change

of this function candidate along the solution trajectory can be written as:

_V = �zTQz + 2�T (u+W + ��)

� ��min(Q)kzk2 + k�kk(u+W + ��)k
(23)

From equation (23) it can be seen that the e�ect of impulsive force due to the impact of the

manipulator with the environment enters the rate of change of Lyapunov function. However,

its e�ect is factored by the magnitude k �BT
Pzk which includes the model of the end-point

compliance of the manipulator given in the de�nition of �B. GivenP, one can reduce the e�ect

of impact force on the closed-loop stability of the controller by introducing more compliant

structure or material (low magnitude of Kc). For example one design methodology can be

the introduction of the compliance end-point to the design of manipulator. As a result, the

magnitude of k �BT
Pzk can be reduced by mechanical design of the manipulator.

Let us de�ne a constant � > 0 such that a given P, Kc and bounded error vector z we can

have k �BT
Pzk < � � �. Then from the de�nition of the robust controller given in equation

(16), the rate of change of Lyapunov function can be written as:

_V � ��min(Q)kzk2 + 2�T (u+ �+ �)

� ��min(Q)kzk2 + k�k(�k�k�=�+W + ��)
(24)

Let us further assume that the magnitude of impact force is bounded. This is a valid as-

sumption since the impact force is also a function of the approach velocity of the manipulator



1995 ACC 7

-15

-10

-5

0

5

10

15

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

 l 
b 

.  
f o

 r 
c 

e

 Time (sampling instants)

Figure 1: Force response of the manipulator during the impact phase in the case where no

compliance is introduced.

to the environment and also �� is the result of �rst stage reduction of the impact force, i.e.

k��k � �. As a result of the above assumptions and equation (24) we have:

_V � ��min(Q)kzk2 + k�k(�k�k�=� + �+ �)

� ��min(Q)kzk2 + 3��
(25)

and consequently, _V � 0.

To further examine the e�ect of compliance in the stable response of the controller during

the impact phase of the manipulator with the environment, we carried series of experiments.

In these experiments, the manipulator approaches a rigid environment with a given velocity.

When the contact is detected, the manipulator switches from the position control to force

control. Figure (1) shows the response of the manipulator when there is no e�ective com-

pliance neither in the manipulator nor in the contacting environment. Clearly, the response

is an unstable one since the manipulator bounces from the environment (positive values of

force indicate lost of contact). Figure (2) shows the response of the manipulator with the

same approach velocity for the case compliance material has been introduced at the point

of contact. This response is an stable one.

4 Conclusions

There are many factors e�ecting the stable phase transition from the free motion to the

constrained motion of the manipulator. Among these factors are the presence of compliance
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Figure 2: Force response of the manipulator during the impact phase having the same

approach velocity of that of �gure (1) with the introduction of compliance.

in the interacting bodies, the approach velocity, the sampling time for both the manipulator

and the force sensor and the e�ect of switching index for changing from the position control

mode to the force control mode during the impact and during post-impact phase are among

the few.

This paper presented a discussion based on the control methodology for uncertain dy-

namical system for the e�ect of compliance during the impact phase of the manipulator. It

was shown that one of the agent which can decrease the sensitivity of the closed-loop system

to the e�ect of impulsive force which arises during the impact is the magnitude of the com-

pliant property of the manipulator. Experimental results are also presented to demonstrate

the e�ect of the compliance on the stability of the manipulator during the impact phase.
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