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Abstract. In robotic tasks where the manipulator has to make transition from free space motion to
constrained one, there always exists a inevitable phase transition. A number of controllers have been
proposed in the literature with various discussions on their practical implications. In this paper for
the �rst time a novel framework for studying design of controllers for robotic contact tasks problem
is proposed. This framework presents a natural set-up to study the performance of controller. The
method of this paper combines the embedded passive compliant properties of the interacting system
(i.e. manipulator and the contacting environment) with the basic controller to achieve the hybrid
bounce-less property. Here the interacting environment is used as a natural switching surface for
the discontinuous controller. The application of the proposed framework is demonstrated through
experimental results.
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1. Introduction

In general, the contact task is de�ned as the abil-

ity of the computer controlled machine such as

dexterous robotic devices to follow a free space

trajectory and then make and maintains contact

with the environment for exerting a desired con-

tact force on it. In general, they make up a large

proportion of the tasks to which the robot can be

applied. One application can be the force-guided

autonomous motion of the manipulating system

for detecting obstacles in its environment and then

maintaining the contact.

Recently, various initiatives focused on the devel-

opment of control laws which can result in an

stable controller for the manipulator during the

transition from free motion to constrained motion.

Kazerooni (1, ) proposed a controller based on

the notion of impedance control where the closed-

loop dynamics of the manipulator is matched with

a target dynamics with compliance properties.

The stability of the controller is then investigated

based using the small gain theorem. Mills (2, )

proposed a discontinuous controller and discus-

sions on its performance based on the notion of the

generalized dynamical systems. In this scheme,

the environment is modeled as spring and damper

(a compliantmodel of the environment). A practi-

cal approach for controlling the contact transition

was proposed by Payandeh (3, ). In this method,

the gains of the controller are switched during dif-

ferent phases of motion to achieve a stable contact

force regulation. Several methods for controlling

the transition from free motion to constrained mo-

tion with the objective on minimizing �ngertip

load oscillation during transition was investigated

by Hyde and Cutkosky(4, ). A suitable controller

based on the input command shaping was pro-

posed. Using one degree of freedom manipulator,

experiments were performed to demonstrate the

stable performance of the controller. Marth, Tarn

and Bejczy (5, ) proposed a model-based algo-

rithm combined with explicit force control to reg-

ulating the phase transition. The force controller

is switched on when the contact is established.

The stability results were presented for the impact

phase of the manipulator with the rigid environ-

ment. The non-collocation e�ects between sensors

and actuators have been studied in (7, ), (8, ). A

thorough study of force robotic force controllers

has been provided in (9, ), (10, ).

As correctly pointed-out by Kazerooni, Mills and

Payandeh, in contact transition, the dynamics of

the closed-loop system changes and the external

contact force measurements which was omitted as

a part of feedback control system in the free mo-



tion is now a part of the controller. However, the

methodology of using the force signal as a nat-

ural indication of the contact phenomenon has

been incorporated in di�erent ways. Mills has

use the force signal to switch the controller from

the position control PD mode to the force con-

trol PD mode. While Kazerooni used the force

signals as a part of the feedback loop while main-

taining the structure of the controller unchanged

(i.e. impedance control). In this way, the posi-

tion controller can also be used as a force control

through the impedance parameterization. Payan-

deh has used the measure of the instant of contact

to change the gains of the controller while main-

taining the structure of the robust controller �xed

during the phases of free motion, impact and con-

strained motion.

In this paper, the force signal is also used as a

switch for the controller from the position control

mode to the force control mode. However, the

frame work which is proposed to further study

the performance of the closed-loop system is new.

It is proposed that general free to contact model

of the manipulator is best presented using the no-

tion of the di�erential inclusions which is a class of

dynamical systems with the discontinuous right-

hand side. Here the physical contact surface can

be used as a natural switching surface for the con-

troller.

The paper is organized as follows: section (2)

presents an overview of modelling of physical sys-

tems which results in an implementation of a

bounce-less controller; in section (3) a discontin-

uous model of the manipulator and the analy-

sis of the switching for bounce-less performance

is presented, section (4) presents discussions on

some experimental results and �nally section (5)

presents discussions and future work.

2. Toward Design of a bounce-less Controller

In general in has been realized that to accom-

plish a practical bounce-less controller in robotic

contact tasks, there has to exist some compli-

ance either in the structure of the manipulator

(e.g. structural 
exibility), in the contacting en-

vironment (e.g. compliant environment) or in the

closed-loop controller (e.g. sti�ness controller).

This presence of compliance either in the contact-

ing environment or in the manipulator structure

can reduce the e�ective impulsive forces which

arises due to the collision between two solid bod-

ies(12, ). The advantages of the presence of com-

pliance has been shown both analytically and ex-

perimentally, see for example, (, ), (, ), (6, ),(11,

), (, ) and (, ). This in e�ect reduces the con-

tact dynamic from the in�nite mode to a �nite

mode and can reduce (eliminate) the number of
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Fig. 1. Simulation results of an ideal manipulator
when interacting with a rigid environment with

various degrees of compliance.
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Fig. 2. Contact force response of the manipulator dur-

ing the impact phase in the case where no dom-

inant compliance is introduced.

bounces. For example, Figure (1) shows a sim-

ulated position response of an ideal manipulator

when approaching a sti� environment.

In general, compliance in the contacting bodies

(either in the environment or manipulator) al-

lows the increase in the closed-loop bandwidth

and hence increasing the bounds of the desired

controller gains (, ). For example, Figure (2) and

(3) shows the actual response of the manipula-

tor when approaching a rigid environment with an

identical controllers. It can be seen for the case

where there is no dominant compliance presence,

the manipulator bounces from the contacting en-

vironment (positive value of approximately 1 lbf

represents the non-contact phase, any value less

than this represents the contact phase).

In the following this e�ective passive approach for

introducing compliance in the model of the manip-

ulator has been used in conjunction with a robust

controller to achieve a stable phase transition and

force regulation in robotic contact tasks.
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Fig. 3. Contact force response of the manipulator
during the impact phase having the same ap-

proach velocity of that of �gure (2) with the

introduction of dominant source of compliance.
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Fig. 4. De�nition of the variables associated with the
one-dimensional example

2.1. A Natural Discontinuous Model of the

Closed-Loop System

Let us consider a one dimensional compliant

mechanism with the actuation force. The dy-

namic equation of the system in an unconstrained

phase can be written as:

m�x(t) = �r + u(t)1 (1)

where for this case the reaction force from the

environment during the contact phase is zero, or

r = 0. The dynamic equation of this system in

contact with a rigid environment can be written

as:

m�x(t) = �r + u(t)2 (2)

where r = kc(x
? � x) for x? � x < xc

n
is the re-

action force acting on the mass due to interaction

with the rigid environment and the k is a model

of compliant. Figure (4) shows all the position

variables involved.

Let us now de�ne a controller for both contact

and non-contact phases of the mechanisms of the

e
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Fig. 5. A de�nition of the discontinuous controller

form:

u(t) =

�
u(t)1 = kp(x

d � x)� kd _x for r < 0

u(t)2 = kp(r � rd)� kd _r for r > 0
(3)

where xd; _xd is the desired trajectory of the end-

point and rd The desired contact force to be ex-

erted on the environment (i.e. xd is generated

through an exploratory planning strategy to lo-

cated the unknown environment). At the instant

when the contact is detected, the controller regu-

lates the desire contact force speci�ed by rd. By

taking into account the relationship between the

contact force and the state variables of the mech-

anisms, the controller u(t)2 can be written as:

u(t)2 = kp(kcx
d � kcx)� kdk _x (4)

Now for example de�ning e = (x? � x) � xc, a

representation of the control inputs which was de-

�ned in equations 3 and 4 can be de�ned in Figure

5. It can be seen in this representation that the

controller is discontinuous about the origin where

the initial contact between the manipulator and

the environment is detected.

In general, the two dynamic model of the object

in both regions can be written as:

m�x(t) = �r + u(t) (5)

The right-hand side of the system of the above dif-

ferential equation is discontinuous. the disconti-

nuity both arises from the presence of the reaction

force from the environment and the the nature of

the controller at x+xc
n
= x?. The set of points in

the state space where the right-hand side of (5) is

discontinuous is called a surface of discontinuity

similar to what is found in the theory of variable

structure (13, ). For this example, the surface of

discontinuity S, can be represented by:

S =
�
(x; v) 2 R2 j s(x; v) = 0

	
(6)

This surface divides the phase space into two open

regions, R+ =
�
(x; v) 2 R2 j s > 0

	
and R� =
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Fig. 6. De�nition of the discontinuity in the state vari-
able which arises naturally from the impact

with the environment

�
(x; v) 2 R2 j s < 0

	
(14, ). Inside these regions,

the right-hand side of (5) satis�es a local Lipschitz

condition, therefore we are guaranteed existence,

uniqueness, and continuous dependence on initial

conditions for solution. Trajectories are well de-

�ned an continuous until they hit the surface of

discontinuity S where state derivatives are discon-

tinuous. The notion of a solution of (5) must be

generalized for trajectories which have discontin-

uous derivatives.

Figure (6) shows two types of trajectories. The

trajectory b is for the case when the manipulator

bounces at the discontinuous surface s = (x; v) =

0 and the controller switches from the free motion

to constrained motion. Trajectory represents the

motion where there trajectory does not have any

bouncing at the natural surface of discontinuity.

2.2. Existence of the Solution

Let _x = f(x; t) represent the dynamic of the sys-

tem (i.e. the state-space description of the dy-

namics of a physical system (e.g. equations (1-

2)))where x 2 Rn. f(x; t) where f : Rn � R !

Rn represents the vector-valued function which is

piece-wise continuous in a �nite domain G which

itself consist of �nite number of domains Gi. Let

M be a set which consist of boundary points of

these domains. For each point (t; x) of a domain

G, a set F (t; x) is an n-dimensional space is speci-

�ed. If at the point (t; x) the function f is contin-

uous, the set F (t; x) consists of one point which

coincides with the value of the function f at this

point. If (t; x) is a point of discontinuity of the

function f , the set F (t; x) should be de�ned. The

solution to _x = f(t; x) is called a solution to the

di�erential inclusion:

_x 2 F (t; x) (7)
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Fig. 7. A schematic of a solution to the di�erential
inclusions

The objective is to construct f(t; x) at the point

of discontinuity of the function f , under which the

di�erential inclusion (7) can be applied to approx-

imate the description of the process.

Consider the case of the example, f(t; x) is discon-

tinuous on a smooth surface S given by s(x; v) =

0. The surface S separates its neighborhood in

the x space into domains G� and G+ (i.e. be-

fore and after contact with the environment). For

t = constant and for the point x? approaching the

point x 2 S from the domainG� and G+. Let the

function f(t; x?) have the limit values:(15, )(Fil-

ippov's solution)

limx?2G�;x?!xf
�(t; x?); limx?2G+;x?!xf

+(t; x?)

Then the set F (t; x) is a linear segment joining

the endpoints of the vectors f�(t; x) and f+(t; x)

(Figure 7). Or, in other words it can be stated

that a vector function x(:) is called a solution on

[t0; t1] if it is absolutely continuous on the interval

and for almost all t 2 [t0; t1],

_x 2 K[f ](x) (8)

where:

K[f ](x) = �co
n
limf(x?) j x? ! x; x? 62 Nf

[
N
o

(9)

where Nf � Rm, �Nf = 0(18, ).

The content of Filippov's solution is that the tan-

gent vector to a solution, where it exists, must lie

in the convex closure of the limiting values of the

vector �eld in progressively smaller neighborhoods

around the solution point (B(x; �), or:

K[f ](x) �
\
�>0

\
�N=0

�cof(B(x; �) �N; t)

Filippov presented a calculus for computing the

di�erential inclusion which was then further



stated by (, ).

3. Analysis of a bounce-less controller

Let the model of a manipulator in non-contact

phase expressed in its end-point coordinate frame

be given as:

M�x
��x+ h�x + g�x = F (10)

where: M�x = JTM�J
�1 is the mass matrix,

h�x = J�Th(�; _�)�M�x
_J _� is the Coriolis and grav-

ity, g�x = J�Tg(�) is a vector of disturbances and

uncertainties and J is the Jacobian of the manip-

ulator.

Let a non-linear controller be given as:

F = ~M�xF
0

1 +
~h�x + ~g�x (11)

where F
0

= (�xr � _e1 � e1 + F1) and F will be

de�ned later. ~(:) represents an estimate of the

actual parameters.

Substituting the control law of equation (11) into

the open-loop dynamics and expanding and sim-

plifying term we have:

�e1 + _e1 + e1 = F1 + ~M�1
�x ( ~M�x �M�x)��x+

~M�1
�x ((~h�x � h�x) + (~g�x � g�x))

(12)

In the contact phase, dynamic equation of the sys-

tem can be written as:

M�x
��x+ h�x + g�x = F � R (13)

where R = Kcx is the contact force expressed as

a change in displacement of the complaint end-

point from its nominal dimension (e.g. xc
n
). The

nonlinear controller of equation (11) can then be

written as:

F = ~M�xF
0

2 +
~h�x + ~g�x + ~R (14)

where ~M�x is an estimate of the inertia matrix,
~h�x is an estimate of the Coriolis and gravity force

vector and ~g�x is an estimate of the disturbances

and uncertainties. ~R is a measure of the actual

contact force vector. In the above equation F
0

2
is

de�ned as:

F
0

2
=
h
( �Rr � _Re �Re)=Kc + F2

i
(15)

where Re = R � Rr. Here (:)r stands for refer-

ence parameters. F2 is the robust force controller

which will be de�ned later.

Substituting equations (15) and (13) and then into

the open-loop dynamics, we obtained the follow-

ing,

�
h
( �Rr � _Re �Re)=Kc +F2

i
=

� ~M�1
�x M�x

��x+

~M�1

�x

h
(~h�x � h�x) +

(~g�x � g�x) + ( ~R� R)
i

adding ��x to both side and incorporating the re-

lationship of the end-point compliance of the ma-

nipulator, we obtain:

�Re + _Re +Re �KcF2 =

Kc
~M�1
�x (M�x � ~M�x)��x+

Kc
~M�1

�x

h
(~h�x � h�x) + (~g�x � g�x) + ( ~R �R)

i

or,

�Re + _Re + Re = KcF2 +KcW (16)

where W is the vector of uncertainty de�ned

above.

The above equation can be put in the following

state-space form:

_x = Ax+Bu+BW ; y = Cx (17)

where x = (Re; _Re)T and B contains the com-

plaint model of the end-point.

Combining the above with a model of the auxiliary

dynamics, of the form:(?)

_� = �� + �Re (18)

(the above equation is used to model the exoge-

nous inputs which can act on the system. the

poles of these models are all located on the right

hand side of the imaginary axis (?)). We then

obtain the following combined dynamics:

�
_x
_�

�
=

�
A 0

�C �

��
x

�

�
+

�
B

0

�
u+

�
B

0

�
W

where the output y is de�ned as:

y =
�
C 0

�� x

�

�

or we can write:

_z = �Az + �Bu+ �BW (19)

The e�ect of impact force representation � which

has a bounded magnitude with a short duration

is assumed to be modeled as an additive compo-

nent to the contact force R (?). Following similar

derivation as above, the dynamics of the system by

including the additive impact term can be written



as:

_z = �Az + �Bu+ �BW + �B�� (20)

where �� is refer to as the �rst stage reduction of

the e�ect of impact force through the inverse of

the mass matrix or �� = ~M�1
�x �.

The objective is now to design an additional con-

trol input u which can result in the closed-loop

system to be stable in the presence of bounded un-

certainties de�ned by W (i.e. kWk � �)(?) and

then in combination with the presence of bounded

impact force �.

The objective now is to design a controller which

can results in a stable and robust performance of

the manipulator during various stages of motion.

Then based on the performance of the controller

in various discontinuous regions, we can deduct

the performance at the surface of discontinuity.

Let us now de�ne a controller of the form:

u = Kz + p (21)

In general, the gain matrixK can be chosen such

that it stabilizes the unstable poles of the systems

de�ned in equation (11) and the unstable poles of

the auxiliary dynamics de�ned in equation (12).

Let the new closed-loop system be de�ned as:

_z =
�
�A+ �BK

�
z + �Bp+ �BW

= ~�Az + �Bp+ �BW

(22)

For the case of additive bounded impact force we

can de�ne the closed-loop system as:

_z = ~�Az + �Bp + �BW + �B�� (23)

the controller input p is de�ned as :(?)

p =

8>><
>>:

�
�BTPz

k
�BTPzk

� if k �BTPzk > �

�
�BTPz

�
� if k �BTPzk � �

(24)

where � is the bound on the uncertainty and � is a

small positive number determined by the designer.

P is a positive de�nite symmetric matrix repre-

senting the solution to the following Lyapunov

equation for some Q > 0,

P ~�A+ ~�A
T

P = �Q (25)

It should be noted that gains K are chosen such

that ~�A is asymptotically stable, i.e. �( ~�A) � C�
where C� corresponds to the left hand side of

the complex plane. The following will show that

the controller form for p de�ned in (18) renders

the system (16) and then (17) globally practi-

cally stable. This implies that the system so-

lution is uniformly bounded and uniformly ulti-

mately bounded(?).

Theorem 1: The system de�ned in equation (16)

with kWk � � with the controller de�ned in (16)

results in a global practical stable system where

the solution is uniformly ultimately bounded.

Proof: Let us consider the Lyapunov function

candidate of the form:

V = zTPz (26)

implementing the controller de�ned in (18) into

equation (16), the derivative of the Lyapunov

function candidate along the solution trajectory

can be written as:(?)

_V = _zTPz + zTP _z

= �zTQz + 2�T (u+W )

� ��min(Q)kzk2 + 2�T (p+W )

(27)

where we de�ned � = ( �BTPz). By Rayleigh-Ritz

inequality, and noting that Q is chosen as a posi-

tive de�nite matrix, we have �min(Q)zT z � zTQz

and �min > 0.

Let us now consider the controller of equation

(18), for k�k > �. In equation (21) we can write:

�T (u+W ) = �T (���
k�k

+W )

= �T (���
k�k

) + �TW

� k�T (���
k�k

)k+ k�TWk

= �k�k�+ k�k� = 0

(28)

and for the case when k�k � � we have:

�T (u+W ) = �T (���
�

+W )

� �T (���

�
) + k�k�

= �k�k2�=�+ k�k�

= (�k�k2=�+ k�k)�

(29)

the maximum value of the above is when k�k =

�=2. Therefore,

_V � ��min(Q)kzk2 + ��=2 (30)

consequently,

_V < 0 (31)

where �min > 0 since Q is positive de�nite. Thus

condition (25) is met for all time and all z such

that:

�min(Q)kzk2 � ��=2 > 0 (32)



or the bounds on the error can be obtained to be:

kzk �

�
��

2�min(Q)

� 1
2

(33)

2

Theorem 2: Given the model in equation (17)

with the bounds on the uncertainty vector W and

�, the controller de�ned as: p = � �

k�k
�� if k�k > ��

and p = ��

��
�� if k�k � �� where �� is the new bound

in the vector of uncertainties and the impact force

and �� is the new designer choice scalar for the

case of impact task results in a closed-loop sys-

tem to be global practical stable and the solution

(i.e. the error vector z) to be uniformly ultimately

bounded.

Proof: Let us consider the Lyapunov function

candidate of the form de�ned in equation (20).

The rate of change of this function candidate

along the solution trajectory can be written as:

_V = �zTQz + 2�T (p+W + ��) (34)

Or, from Rayleigh-Ritz inequality, the above can

be written as:

_V � ��min(Q)kzk2 + 2�T (p+W + ��) (35)

From equation (29) it can be seen that the ef-

fect of impulsive force due to the impact of the

manipulator with the environment enters the rate

of change of Lyapunov function. However, its ef-

fect is factored by the magnitude k �BTPzk which

includes the model of the end-point compliance

of the manipulator given in the de�nition of �B.

Given P, one can reduce the e�ect of impact force

on the closed-loop stability of the controller by

introducing more compliant structure or material

(low magnitude of Kc). For example one design

methodology can be the introduction of the com-

pliance end-point to the design of manipulator.

As a result, the magnitude of k �BTPzk can be re-

duced by mechanical design of the manipulator.

_V � ��min(Q)kzk2 + 2�T (u+ �+ �)

� ��min(Q)kzk2 + k�k(�k�k��+W + ��)
(36)

Following similar argument as previous theorem

for k�k > �� we have from equation (30):

�T (p+W + ��) = �T (����
k�k

+W + ��

� k�T
�
����

k�k

�
k+ k�T (W + ��)k

= k�
�
��� + kW + ��k

�
= 0

Since �min > 0 the above equation and equation

(29) implies _V < 0.

Similar argument can be stated for proving the

the stability of the closed-loop system for the case

when k�k � ��. In equation (30) we can write:

�T (p+W + ��) = �T (����
k�k

+W + ��

� k�T
�
����

k�k

�
k+ k�Tk��

= (�k�k2=��+ k�k)��

the maximum value of the above is when k�k =

��=2, Therefore _V � ��min(Q)kzk2 + ����=2. Con-

sequently we have _V < 0 where �min > 0 since

Q is positive de�nite. Thus the above stability

condition hold for all time and z such that:

�min(Q)kzk2 � ����=2 > 0

where we can write the bound on the error to be:

kzk �

�
����

2�min(Q)

�1
2

(37)

2.

Similar controller can be applied to the case of the

free motion before the manipulator makes contact

with the environment. For this case, it can be

shown that there also exist a lyapunov function

candidate of the form V1 = zT1 P1z1 such that _V1 <

0. As a result, in this region one can also have a

globally practically stable closed-loop system.

At the point of discontinuity, the global asymp-

totic stability theorem of Lyapunov for continu-

ous system is modi�ed by replacing the derivative
_V (:) with the Dini-derivativeD�V (:), where the �

represents any four possible Dini-derivatives (16,

). At any point where the derivative _V (:) exists,

all four Dini-derivatives will have a common value

equal to the derivative at that point.

For the points in S, we must look at Dini-

derivatives. All the discontinuities are simple,

therefore both left and right limiting values of the

derivatives of V (:) exist outside of S. The Dini-

derivatives are simply these limiting values. Since
_V is negative semi-de�nite for all points outside

S, the Dini-derivatives are negative semi-de�nite

for point in S (17, ).

3.1. Experimental Study of the Discontinuous

System

To demonstrated the feasibility of the proposed

discontinuous controller, a series of experiments

were conducted.

The computational system used was a PC 386 as

the host and the spectrum 320C30 DSP board as

the servocontroller. The user writes the control

code on the DOS development system in C, com-
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Fig. 8. The response of the discontinuous controller for
manipulator approaching a compliant environ-

ment and then exerting �3 lbf on the environ-

ment. In this �gure each sampling instances
corresponds to 0:4ms.

piles and links the program and down-loads it to

the DSP for execution. During runtime, the DSP

executes without interference from the host. The

DSP has dual-ported memory, which means that

the PC can access this memory for reading or writ-

ing without interrupting the DSP, and vice-versa.

The trajectory planning of the manipulator was

done on the host computer, which calculated the

reference set points for the controller to follow.

These references were then passed on to the DSP

controller. Two NSK Megatorque direct drive

motors were used as actuators for the two links.

The motors are capable of delivering high torque

(maximum torque=249 N.m), have low friction,

and come equipped with accurate angular posi-

tion sensor (153,600 counts/rev) A six axis (ATI

15/50 ) force/torque sensor was used for measur-

ing the contact forces. This six axis sensor can

read forces upto 15 pounds and has a maximum

sampling frequency of 2500 Hz (this is the rate

that is used in the experiments). The links of the

manipulator are made of aluminum with a semi-I

cross sections which can reduce the 
exibility of

the links to zero (very sti� link construction).

The objectives of the experiment were to investi-

gate the performance of the discontinuous model

of the system de�ned in equations (15) and (16)

where the controller is switched from the none-

contact phase to contact phase upon the detection

of contact. For these experiments, the gains and

switching instances are selected a priori. In all of

the experiments the motion of the manipulator is

along a single axis of the end-point frame.

Figure (6) shows the response of a discontinuous

controller for the case when approaching a com-

pliant environment (i.e. the environment is con-

structed to be wooden cantilever beam with 
ex-

ibility) and Figure (8) shows the response of the

controller for the case of approached a very sti�

environment (i.e. a rigid wall).

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 1000 2000 3000 4000 5000 6000

Fig. 9. The response of discontinuous controller for
manipulator approaching a sti� environment

and then exerting �3 lbf on the environment.

In this �gure each sampling instances corre-
sponds to 0:4ms.

4. Discussions and Future Work

Application of the robotic system to various tasks

involves the inevitable phase transition from the

unconstrained motion to the constrained one.

Controllers proposed in the literature in general

switch the control action from the position con-

trol mode to the force control mode upon detec-

tion of the instance of contact and hence resulting

in a dynamical system with a discontinuous forc-

ing function.

This paper presented a natural frame-work for

studying the performance of such robotic contact

tasks where the action of the controller is discon-

tinuous. The frame work is based on the Fil-

ippov's notion of the di�erential inclusions and

Clarke's notion of the generalized gradient. Some

preliminary modelling of the closed-loop system

was presented. It is remain to analytically show

the stability bounds of the closed-loop discontin-

uous system equation (17).

Some experimental results have been presented

to demonstrate the feasibility of such controller.

For these experiments, the gains of the controller

have been selected for each phases of the contact

task. The result shows the practicality of such

controller.
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