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Abstract 
 

In this paper we present our initial work on simulating 
suture and suturing using mass-spring models. Various 
models for simulating suture were studied, and a simple 
linear mass-spring model of the suture was determined to 
give good performance. A novel model for pulling a 
suture through a deformable surface is presented. By 
connecting two separate surfaces through the suture, our 
model can simulate a suturing task. The results are shown 
using software we developed that runs on a standard PC 
and models the action of a suturing device used in 
minimally invasive Laparoscopic surgery. 
 

1. Introduction 
 
In this paper we attempt to model a suture, and create a 

simulation of a suturing task realistic enough to use in a 
surgical training environment, and fast enough to run on a 
desktop computer. One of our main goals is for the system 
to run on PC hardware, e.g. a Pentium III system with an 
Nvidia geForce 2 video card. Such a goal is difficult to 
achieve, since simulating deformable objects and 
performing collision detection are both computationally 
intensive. However, for development of a surgical training 
environment, e.g. our Laparoscopic Training Environment 
(LTE), virtual representations need not be extremely 
precise. They only have to be accurate enough for a 
trainee to gain the required dexterity and hand-eye 
coordination. In this paper we model a suture and a simple 
deformable object. We develop and describe a 
preliminary task in which we use the suture, complete with 
a simulated Endo Stitch suturing device that the operator 
can use to stitch together two deformable objects. 

Many groups have been working on surgical simulation 
in general ([1], [2], [3], and [4]), and the specific task of 
simulating suturing ([5], [6], and [7]). Measuring 
surgeons’ performance using a simulation was 
investigated in [5]. However, the paper focused on the 
initial penetration of the object with the suturing needle, 
and did not consider the entire suturing process. A group 
at Rice University took the opposite approach in [6]. They 
focused only the realistic simulation of a suture and its 

behavior, while not looking at the actual suturing task. 
Their paper describes a method for simulating a suture 
using a spline of linear springs and large overlapping 
nodes. Although their method gives up some speed and 
stability, they are able to tie various knots in the suture 
material. 

In [7] a system was designed for training surgeons in 
the task of suturing blood vessels. Blood vessels were 
simulated using mass-spring systems while the suture 
itself was simulated using rigid links of a fixed length. In 
[8], this same group designed a software framework that 
supports many different kinds of surgical tasks. Unrelated 
to surgery simulation, but using similar technology, is 
research like that done in [9], where various legless 
animals were simulated using mass-spring systems. This 
method could possibly be used to create realistically 
moving organs, such as the heart and lungs, in surgical 
simulations. 

This paper presents an initial novel approach for 
simulating suture and the suturing task, where the suture 
and needle is being passed between two tissues in order to 
connect them. The paper is organized as follows. Sections 
2 and 3 describe the deformable models we used to 
represent the objects in our simulation (suture, and tissue), 
while section 4 describes the algorithm used to simulate 
the suturing. Section 5 outlines a demonstration we 
developed using the techniques described, while Section 6 
discusses possible directions for our future research. 
 

2. Deformable Objects 
 
Triangular surface meshes represent the rigid objects in 

our virtual environment, such as the “glass box” and Endo 
Stitch device.  

Our deformable models are mass-spring models. Mass-
spring models, along with finite-element models, are well 
known ways of simulating deformable objects, [6], [7], 
and [8], so we limit our discussion to those aspects 
especially relevant to our development here.  

Each node is a mass point and each edge is a spring 
joining two mass points. Each edge spring when stretched 
or compressed applies a force of  
   * ( ) /eF K Dir currentLength restLength restLength= −  



on the nodes, where eK  is the spring constant and Dir is 
the unit vector pointing from the node whose force is 
being calculated, to the other node of the spring. eK  is the 
same for all edge springs in the model. 

2.1. Home Springs 
 
Using only a mass-spring surface model, one could not 

construct 3D deformable objects that could be compressed 
and stretched, since they would not return to their initial 
shapes after deformation. One approach to solving this 
problem is to create an internal structure of springs to give 
the surface the support needed to maintain, and return to 
its initial shape after being deformed. For example, this 
method is used to model blood vessels in [7]. Although it 
proves effective and stable for small models with small 
displacements, with more complicated objects or large 
deformations, the object can easily become unstable or 
permanently tangled.  

To address this problem, our models use “home 
springs” connected to each node. These home springs 
connect each node to a fixed location in 3D space (the 
original location of the node), and maintain the connected 
vertex in its undisplaced position through the creation of 
an internal force proportional, but of opposite direction, to 
the displacement of the node. As a result, when the object 
has been deformed, for example by an interaction with 
another object, after the interacting object has been 
removed, it will be pulled back to its original shape 
(figure 1, a-c). 

We have used this method before in an early phase of 
our LTE as well as in a surface mesh subdivision model in 
[10]. It is an efficient solution since the force applied by 
each home spring to its connected node is simply 
calculated as (hom - )hF K ePosition currentPosition= . 
This equation consists of only a vector subtraction, and 
scalar multiplication, and is therefore much faster than the 
one used for the edge-springs, which involves a square-
root operation. Since the number of home springs in a 
surface model will be proportional to the number of edge 
springs, this model adds only a small constant amount of 
computing over the mass-spring surface model. 

a) b) c)

 
Figure 1. Deformation and restoration of a 

model containing home springs 
 

2.2. Node-position Integration Method 
To solve for the deformed state of the object we use 

Euler’s method to integrate the positions of the nodes 
under a quasi-static approximation to Newtonian physics 
(similar to the method mentioned in [7]). In this method, 
the velocity of a node at a given point in time is calculated 
only from the forces acting on the node at that instant, and 
does not include the velocity at the previous time step (i-
1).  

In a standard mass-spring  model the position of each 
node is integrated according the to the following 
equations, where M is the node’s mass, B is a damping 
constant, dt is the timestep, and F , V , and Pi i i  represent 
the force acting on the node, the node’s velocity, and the 
node’s position, all at time step i. 
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Combining equations 1 and 2, we get 
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If we assume the node mass is relatively small this 

simplifies to: 
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The advantages in using this quasi-static method are 

speed and simplicity. Since there are fewer calculations, it 
runs faster (8-10% in our application), and also allows the 
mass attribute M to be left out of calculation. 

3. Suture Model 
 
The suture uses the same deformable model data 

structure that we use for the surface of the objects. The 
difference is that instead of creating a 2D mesh in 3D 
space, the nodes are simply arranged linearly, one after 
another, and joined together with edge-springs (see figure 
2). The result is a 1D suture in 3D space. 

Because the suture must be able to move within the 
scene, its home-spring constant Kh is set to zero. We also 
want the suture to behave realistically under the influence 
of gravity, so a constant gravitational force is added to 
each node).  

 



Surface Mesh Suture  
 

Figure 2. Surface mesh and Suture models. 
 

We investigated several other possible representations 
of the suture, involving various forms of springs and 
dampers [11], see figure 3. The first, and simplest one, 
was simply masses connected together by springs and 
involved no damping. The second model added dampers 
running between the masses. Three more complicated, and 
more realistically behaving, models involving torsion 
spring, torsion dampers, and viscous damping effects were 
also implemented. We chose to use the first model for the 
suture in this simulation. This model was very fast to 
calculate, but originally behaved unrealistically due to the 
lack of damping. Using our quasi-static method for 
integrating the position of the model’s nodes, a global 
viscous damping effect (eq. 3) is introduced without 
adding to the complexity of the calculations and slowing 
the simulation down. 
 

 
 

Figure 3. Various suture models, each with 
different construction and behavior. 

 

3.1. Suture Rendering 
 
Since the nodes of the suture lie in a linear chain, a 

commonly used method is to render the suture as line 

segments. This is fast and simple, but it would not be the 
same rendering method used by the triangle-based objects, 
and would therefore look very different.  

To avoid this problem, we chose to render the suture 
by creating a cylinder that contains the same number of 
sections as there are segments in the suture. We then 
reposition this cylinder over of the suture before each 
frame is rendered. This newly defined shell is then 
rendered instead of the suture itself. An illustration of the 
process can be seen in figure 4 below. Since the suture is 
now rendered using a triangle model, it can now undergo 
the same lighting calculations, and have a similar 
appearance. 

Cylindrical Shell Suture at time t Shell placed over suture

 
Figure 4. Suture rendering 

 

4. Simulated Suturing 
 
To make the problem of simulating suturing more 

manageable, we have chosen to ignore for now the 
problem of inserting a needle into a deformable object, 
and only deal with a suture that has already passed 
through the object.  

4.1. Basic Suturing algorithm 
 
In real suturing, the needle passes through an object, 

creating a hole through which the thread is pulled. As long 
as the forces on the suture are small, friction between the 
suture and object will tend to prevent the suture from 
sliding through the hole, so the suture will pull the object 
along with it. Simulating suturing by both creating a small 
hole in the triangularly modeled deformable object, and 
simulating the friction forces between it and the suture 
would be overly complex for the purpose of a training 
environment.  

Instead, we model the above effects by treating one of 
the nodes of the object as a hole, and connecting this node 
to one of the nodes of the suture. This can be seen in 
figure 5a, where the filled circles are the nodes of the 
object, and the hollow circles are nodes of the suture. In 
figure 5a, there is no force being applied to the suture. In 



figure 5b, a force is applied. This force pulls the suture 
toward the upper right. Since the node of the suture is 
joined to a node of the object, the two move together as 
one, and the rest of the object gets pulled along with it. 

 

a) b)

 Figure 5. Simulation of the suture running 
through a small hole in the object. 

 
When the object gets pulled along due to the friction 

between it and the suture, there is a limit to how far it will 
move. Eventually the forces on the object, which are 
created by the solution of the mass-spring equations, will 
become large enough that the friction force cannot prevent 
the object from sliding down the suture.  

In figure 6a, node N of the object model (the hole 
through which the suture has been pulled) is being pulled 
down by its neighboring nodes; however, the force being 
applied to it from the thread balance these downward 
forces. Once the suture has been pulled too far, and the 
object stretched too long, the required force from the 
suture to the object in order to keep it from sliding, will be 
greater than the friction between them. To simulate this 
sliding, node N is detached from node S0 of the suture, 
and reattached to node S1. If the suture continues to be 
pulled, then node N will continue to slide down the thread 
(figure 6b), creating the impression the suture is slipping 
through a hole. 

N
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S0

N
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 Figure 6. Slipping of the deformable object 
down the suture. 

 

4.2. Multiple Slipping 
 
During suturing, two or more objects will be pulled 

together by a suture. In figure 7a a suture is shown 
between two pieces of modeled tissue. In order to stitch 
the two pieces together the suture will first pass through 

the left object, and then the right. Using the suturing 
algorithm of 4.1. can lead to the situation shown in figure 
7b where two object nodes will both be attached to the 
same suture node. In the present algorithm there is no 
inter-object, or self-collision detection between the 
deformable models. Hence, a method is needed to ensure 
that the two objects on the suture are not able to slide past 
each other. For example, in figure 7c the right side object 
will be under more strain than the one on the left, and it 
will want to slide; however, because it lies above the left 
object on the suture, it can not slide without pulling the 
left piece with it. 
 

a) b)

c) d)

e) f)

 Figure 7. Multiple objects sliding down the 
suture. 

 
To handle this situation, for each suture vertex we store 

an ordered list of object nodes that are attached. This 
linked-list approach allows us to maintain the order in 
which the object nodes were pierced by the suture. This 
information allows us to easily handle situations such as 
those shown in figures 7c and 7d. In figure 7c the left 
object is under more strain that the one on the right, and it 
will slip down the suture leaving the other object node 
behind (figure 7e). In figure 7d the right object is under 
more strain; however, it cannot slip without pulling the 
right object with it (figure 7f). This can happen only when 
the force on the right attached object node is large enough 
to overcome the friction between itself and the suture, and 
the combined force of the attached object nodes is enough 
to overcome the combined friction between the nodes and 
the suture. If this is not the case, then the object nodes will 
not slide. 
 



5. Endo Stitch Suturing Task  
 
For our simulation of a suturing task, we modeled an 

Endo Stitch device and used that to perform the suturing. 
The end of this device has two jaws and can, through the 
activation of a mechanical switch, pass a needle between 
them. With the needle on one of the jaws, the surgeon can 
pierce the tissue. By closing the jaws and activating the 
switch, the needle will be passed to the second jaw, 
pulling the suture through the puncture. This procedure  
continues until the stitch is formed. We simplified the 
operation of the virtual Endo Stitch device slightly: a 
single key press on the computer’s keyboard will close the 
jaws, pass the needle across, and then open the jaws again. 
In the present preliminary simulation of the suturing task, 
the device is either activated, resulting in the needle 
passing through the object, or it is not. Thus we have 
avoided the need to model the interaction between the 
needle and object. 

 

 
 

Figure 8. Jaw with needle is under the tissue. 
 
 

 
 

Figure 9. Needle has passed from one jaw to 
the other, pulling suture through first object. 

 
In the simulation we define two simple objects as flat 

meshes, one blue, one grey. To suture the two together, 
one positions the device so that the two jaws of the device 
are on opposite sides of an object (figure 8).  

Pressing the keyboard key will pass the needle through 
the deformable object to the other jaw. Raising the device 
pulls the suture through the object (figure 9 Performing 
this same process on the other object, and pulling on the 
suture slightly, will bring the two objects together (figure 
10). To continue stitching the objects together, the process 
is repeated (figure 11). 
 

 
 

Figure 10. Objects pulled together  after 
passing suture through second object,. 

 

 
 

Figure 11. Continuation of suturing procedure. 



 
 

6. Future Work 
 
Many different directions could be explored in future 

work on this simulator. Eventually we would like to be 
able to simulate suturing using a needle, a suture, and a 
pair of grippers. Performing suturing in this way will 
create several problems, such as how to grasp, move 
around, and release the needle using the gripper, and how 
to simulate the needle interacting with, and eventually 
penetrating, the deformable object. 

 
Another area of improvement is in collision detection. 

In the future it may be possible to have the tool be able to 
touch and deform the objects being sutured, prevent the 
suture from hanging down through the objects, and ideally 
have the suture and objects perform self-collision 
detection. Having the suture collide with itself could lead 
to the ability to tie knots in the thread, and/or perform 
more complicated types of suturing. 

Last but not least is force feedback. In the near future 
we intend to integrate a haptic force feedback device into 
our design of a system for training laparoscopic surgeons. 
This will not only provide the user with force feedback, 
but since the device has a handle identical to those used in 
laparoscopic surgery, it will also provide a more realistic 
interface to the simulation.  
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