
Toward Modeling of a Suturing Task
Matt LeDuc, Shahram Payandeh and John Dill

Experimental Robotics and Graphics Laboratory
School of Engineering Science

Simon Fraser University
Burnaby, BC V5A 1S6, Canada

{mleduc/shahram/dill}@cs.sfu.ca

Abstract

In this paper we present our initial work on simulating
suture and suturing using mass-spring models. Various
models for simulating suture were studied, and a simple
linear mass-spring model of the suture was determined to
give good performance. A novel model for pulling a
suture through a deformable surface is presented. By
connecting two separate surfaces through the suture, our
model can simulate a suturing task. The results are shown
using software we developed that runs on a standard PC
and models the action of a suturing device used in
minimally invasive Laparoscopic surgery.

1. Introduction

In this paper we attempt to model a suture, and create a

simulation of a suturing task realistic enough to use in a
surgical training environment, and fast enough to run on a
desktop computer. One of our main goals is for the system
to run on PC hardware, e.g. a Pentium III system with an
Nvidia geForce 2 video card. Such a goal is difficult to
achieve, since simulating deformable objects and
performing collision detection are both computationally
intensive. However, for development of a surgical training
environment, e.g. our Laparoscopic Training Environment
(LTE), virtual representations need not be extremely
precise. They only have to be accurate enough for a
trainee to gain the required dexterity and hand-eye
coordination. In this paper we model a suture and a simple
deformable object. We develop and describe a
preliminary task in which we use the suture, complete with
a simulated Endo Stitch suturing device that the operator
can use to stitch together two deformable objects.

Many groups have been working on surgical simulation
in general ([1], [2], [3], and [4]), and the specific task of
simulating suturing ([5], [6], and [7]). Measuring
surgeons’ performance using a simulation was
investigated in [5]. However, the paper focused on the
initial penetration of the object with the suturing needle,
and did not consider the entire suturing process. A group
at Rice University took the opposite approach in [6]. They
focused only the realistic simulation of a suture and its

behavior, while not looking at the actual suturing task.
Their paper describes a method for simulating a suture
using a spline of linear springs and large overlapping
nodes. Although their method gives up some speed and
stability, they are able to tie various knots in the suture
material.

In [7] a system was designed for training surgeons in
the task of suturing blood vessels. Blood vessels were
simulated using mass-spring systems while the suture
itself was simulated using rigid links of a fixed length. In
[8], this same group designed a software framework that
supports many different kinds of surgical tasks. Unrelated
to surgery simulation, but using similar technology, is
research like that done in [9], where various legless
animals were simulated using mass-spring systems. This
method could possibly be used to create realistically
moving organs, such as the heart and lungs, in surgical
simulations.

This paper presents an initial novel approach for
simulating suture and the suturing task, where the suture
and needle is being passed between two tissues in order to
connect them. The paper is organized as follows. Sections
2 and 3 describe the deformable models we used to
represent the objects in our simulation (suture, and tissue),
while section 4 describes the algorithm used to simulate
the suturing. Section 5 outlines a demonstration we
developed using the techniques described, while Section 6
discusses possible directions for our future research.

2. Deformable Objects

Triangular surface meshes represent the rigid objects in

our virtual environment, such as the “glass box” and Endo
Stitch device.

Our deformable models are mass-spring models. Mass-
spring models, along with finite-element models, are well
known ways of simulating deformable objects, [6], [7],
and [8], so we limit our discussion to those aspects
especially relevant to our development here.

Each node is a mass point and each edge is a spring
joining two mass points. Each edge spring when stretched
or compressed applies a force of
 * () /eF K Dir currentLength restLength restLength= −

on the nodes, where eK is the spring constant and Dir is
the unit vector pointing from the node whose force is
being calculated, to the other node of the spring. eK is the
same for all edge springs in the model.

2.1. Home Springs

Using only a mass-spring surface model, one could not

construct 3D deformable objects that could be compressed
and stretched, since they would not return to their initial
shapes after deformation. One approach to solving this
problem is to create an internal structure of springs to give
the surface the support needed to maintain, and return to
its initial shape after being deformed. For example, this
method is used to model blood vessels in [7]. Although it
proves effective and stable for small models with small
displacements, with more complicated objects or large
deformations, the object can easily become unstable or
permanently tangled.

To address this problem, our models use “home
springs” connected to each node. These home springs
connect each node to a fixed location in 3D space (the
original location of the node), and maintain the connected
vertex in its undisplaced position through the creation of
an internal force proportional, but of opposite direction, to
the displacement of the node. As a result, when the object
has been deformed, for example by an interaction with
another object, after the interacting object has been
removed, it will be pulled back to its original shape
(figure 1, a-c).

We have used this method before in an early phase of
our LTE as well as in a surface mesh subdivision model in
[10]. It is an efficient solution since the force applied by
each home spring to its connected node is simply
calculated as (hom -)hF K ePosition currentPosition= .
This equation consists of only a vector subtraction, and
scalar multiplication, and is therefore much faster than the
one used for the edge-springs, which involves a square-
root operation. Since the number of home springs in a
surface model will be proportional to the number of edge
springs, this model adds only a small constant amount of
computing over the mass-spring surface model.

a) b) c)

Figure 1. Deformation and restoration of a

model containing home springs

2.2. Node-position Integration Method
To solve for the deformed state of the object we use

Euler’s method to integrate the positions of the nodes
under a quasi-static approximation to Newtonian physics
(similar to the method mentioned in [7]). In this method,
the velocity of a node at a given point in time is calculated
only from the forces acting on the node at that instant, and
does not include the velocity at the previous time step (i-
1).

In a standard mass-spring model the position of each
node is integrated according the to the following
equations, where M is the node’s mass, B is a damping
constant, dt is the timestep, and F , V , and Pi i i represent
the force acting on the node, the node’s velocity, and the
node’s position, all at time step i.

-1

-1

-1

(spring forces) - . 1

 . 2

i i

i
i i

i i i

F BV eq

F
V V dt eq

M

P P V dt

=

= +

= +

∑

Combining equations 1 and 2, we get

-1
-1

(spring forces) - i
i i

BV
V V dt

M
= + ∑

If we assume the node mass is relatively small this

simplifies to:

-1

(spring forces)
 eq. 3iV

B
= ∑

The advantages in using this quasi-static method are

speed and simplicity. Since there are fewer calculations, it
runs faster (8-10% in our application), and also allows the
mass attribute M to be left out of calculation.

3. Suture Model

The suture uses the same deformable model data

structure that we use for the surface of the objects. The
difference is that instead of creating a 2D mesh in 3D
space, the nodes are simply arranged linearly, one after
another, and joined together with edge-springs (see figure
2). The result is a 1D suture in 3D space.

Because the suture must be able to move within the
scene, its home-spring constant Kh is set to zero. We also
want the suture to behave realistically under the influence
of gravity, so a constant gravitational force is added to
each node).

Surface Mesh Suture

Figure 2. Surface mesh and Suture models.

We investigated several other possible representations
of the suture, involving various forms of springs and
dampers [11], see figure 3. The first, and simplest one,
was simply masses connected together by springs and
involved no damping. The second model added dampers
running between the masses. Three more complicated, and
more realistically behaving, models involving torsion
spring, torsion dampers, and viscous damping effects were
also implemented. We chose to use the first model for the
suture in this simulation. This model was very fast to
calculate, but originally behaved unrealistically due to the
lack of damping. Using our quasi-static method for
integrating the position of the model’s nodes, a global
viscous damping effect (eq. 3) is introduced without
adding to the complexity of the calculations and slowing
the simulation down.

Figure 3. Various suture models, each with
different construction and behavior.

3.1. Suture Rendering

Since the nodes of the suture lie in a linear chain, a

commonly used method is to render the suture as line

segments. This is fast and simple, but it would not be the
same rendering method used by the triangle-based objects,
and would therefore look very different.

To avoid this problem, we chose to render the suture
by creating a cylinder that contains the same number of
sections as there are segments in the suture. We then
reposition this cylinder over of the suture before each
frame is rendered. This newly defined shell is then
rendered instead of the suture itself. An illustration of the
process can be seen in figure 4 below. Since the suture is
now rendered using a triangle model, it can now undergo
the same lighting calculations, and have a similar
appearance.

Cylindrical Shell Suture at time t Shell placed over suture

Figure 4. Suture rendering

4. Simulated Suturing

To make the problem of simulating suturing more

manageable, we have chosen to ignore for now the
problem of inserting a needle into a deformable object,
and only deal with a suture that has already passed
through the object.

4.1. Basic Suturing algorithm

In real suturing, the needle passes through an object,

creating a hole through which the thread is pulled. As long
as the forces on the suture are small, friction between the
suture and object will tend to prevent the suture from
sliding through the hole, so the suture will pull the object
along with it. Simulating suturing by both creating a small
hole in the triangularly modeled deformable object, and
simulating the friction forces between it and the suture
would be overly complex for the purpose of a training
environment.

Instead, we model the above effects by treating one of
the nodes of the object as a hole, and connecting this node
to one of the nodes of the suture. This can be seen in
figure 5a, where the filled circles are the nodes of the
object, and the hollow circles are nodes of the suture. In
figure 5a, there is no force being applied to the suture. In

figure 5b, a force is applied. This force pulls the suture
toward the upper right. Since the node of the suture is
joined to a node of the object, the two move together as
one, and the rest of the object gets pulled along with it.

a) b)

 Figure 5. Simulation of the suture running
through a small hole in the object.

When the object gets pulled along due to the friction

between it and the suture, there is a limit to how far it will
move. Eventually the forces on the object, which are
created by the solution of the mass-spring equations, will
become large enough that the friction force cannot prevent
the object from sliding down the suture.

In figure 6a, node N of the object model (the hole
through which the suture has been pulled) is being pulled
down by its neighboring nodes; however, the force being
applied to it from the thread balance these downward
forces. Once the suture has been pulled too far, and the
object stretched too long, the required force from the
suture to the object in order to keep it from sliding, will be
greater than the friction between them. To simulate this
sliding, node N is detached from node S0 of the suture,
and reattached to node S1. If the suture continues to be
pulled, then node N will continue to slide down the thread
(figure 6b), creating the impression the suture is slipping
through a hole.

N
S0

S1
S1

S0

N

a) b)

 Figure 6. Slipping of the deformable object
down the suture.

4.2. Multiple Slipping

During suturing, two or more objects will be pulled

together by a suture. In figure 7a a suture is shown
between two pieces of modeled tissue. In order to stitch
the two pieces together the suture will first pass through

the left object, and then the right. Using the suturing
algorithm of 4.1. can lead to the situation shown in figure
7b where two object nodes will both be attached to the
same suture node. In the present algorithm there is no
inter-object, or self-collision detection between the
deformable models. Hence, a method is needed to ensure
that the two objects on the suture are not able to slide past
each other. For example, in figure 7c the right side object
will be under more strain than the one on the left, and it
will want to slide; however, because it lies above the left
object on the suture, it can not slide without pulling the
left piece with it.

a) b)

c) d)

e) f)

 Figure 7. Multiple objects sliding down the
suture.

To handle this situation, for each suture vertex we store

an ordered list of object nodes that are attached. This
linked-list approach allows us to maintain the order in
which the object nodes were pierced by the suture. This
information allows us to easily handle situations such as
those shown in figures 7c and 7d. In figure 7c the left
object is under more strain that the one on the right, and it
will slip down the suture leaving the other object node
behind (figure 7e). In figure 7d the right object is under
more strain; however, it cannot slip without pulling the
right object with it (figure 7f). This can happen only when
the force on the right attached object node is large enough
to overcome the friction between itself and the suture, and
the combined force of the attached object nodes is enough
to overcome the combined friction between the nodes and
the suture. If this is not the case, then the object nodes will
not slide.

5. Endo Stitch Suturing Task

For our simulation of a suturing task, we modeled an

Endo Stitch device and used that to perform the suturing.
The end of this device has two jaws and can, through the
activation of a mechanical switch, pass a needle between
them. With the needle on one of the jaws, the surgeon can
pierce the tissue. By closing the jaws and activating the
switch, the needle will be passed to the second jaw,
pulling the suture through the puncture. This procedure
continues until the stitch is formed. We simplified the
operation of the virtual Endo Stitch device slightly: a
single key press on the computer’s keyboard will close the
jaws, pass the needle across, and then open the jaws again.
In the present preliminary simulation of the suturing task,
the device is either activated, resulting in the needle
passing through the object, or it is not. Thus we have
avoided the need to model the interaction between the
needle and object.

Figure 8. Jaw with needle is under the tissue.

Figure 9. Needle has passed from one jaw to
the other, pulling suture through first object.

In the simulation we define two simple objects as flat

meshes, one blue, one grey. To suture the two together,
one positions the device so that the two jaws of the device
are on opposite sides of an object (figure 8).

Pressing the keyboard key will pass the needle through
the deformable object to the other jaw. Raising the device
pulls the suture through the object (figure 9 Performing
this same process on the other object, and pulling on the
suture slightly, will bring the two objects together (figure
10). To continue stitching the objects together, the process
is repeated (figure 11).

Figure 10. Objects pulled together after
passing suture through second object,.

Figure 11. Continuation of suturing procedure.

6. Future Work

Many different directions could be explored in future

work on this simulator. Eventually we would like to be
able to simulate suturing using a needle, a suture, and a
pair of grippers. Performing suturing in this way will
create several problems, such as how to grasp, move
around, and release the needle using the gripper, and how
to simulate the needle interacting with, and eventually
penetrating, the deformable object.

Another area of improvement is in collision detection.

In the future it may be possible to have the tool be able to
touch and deform the objects being sutured, prevent the
suture from hanging down through the objects, and ideally
have the suture and objects perform self-collision
detection. Having the suture collide with itself could lead
to the ability to tie knots in the thread, and/or perform
more complicated types of suturing.

Last but not least is force feedback. In the near future
we intend to integrate a haptic force feedback device into
our design of a system for training laparoscopic surgeons.
This will not only provide the user with force feedback,
but since the device has a handle identical to those used in
laparoscopic surgery, it will also provide a more realistic
interface to the simulation.

References
[1] P. Gorman, J. Lieser, W. Murray, R. Haluck, and T.
Krummel, “Evaluation of Skill Acquisition Using a Force-
Feedback, Virtual Reality-based Surgical Trainer”, Proc.
Medicine Meets Virtual Reality 1999, IOS Press, 1999, pp
121-123.

[2] J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D.
Berg, and M. Ganter, “Fast Finite Element Modeling for
Surgical SImulation”, Proc. Medicine Meets Virtual
Reality 1999, ISO Press, 1999, pp. 55-61

[3] H. Delingette, “Towards realistic soft tissue modeling
in medical simulation”, proc. of the IEEE: Special Issue
on Surgical SImulation, April 1998, pp. 512-523

[4] U. Kuhnapfel, H. Cakmak, H. MaaB, “Endoscopic
surgery training using virtual reality and deformable tissue
simulation”, Computers & Graphics 24 (2000), pp. 671-
682

[5] Robert V O’toole, Robert R Playter, Thomas M
Krummer, William C Blank, Nancy H Conelius, Webb R
Roberts, Whitney J Bell, Marc Raibert “Measuring and

Developing Suturing technique with a Virtual Reality
Surgical Simulator”, Journal of the American College of
Surgeons, July 1999, pp. 114-27
 [6] Andrew Ladd, “Simulated Knot tying”, Proceedings
of the 2002 IEEE International Conference on Robotics
and Automation, Washington DC

[7] Joel Brown, Kevin Montgomery, Jean-Claude
Latombe, and Michael Stephanides, “A Microsurgery
Simulation System”, Medical Image Computing and
Computer Aided Interventions, The Neatherlands October
2001

[8] K. Montgomery, C, Bruyns, J. Brown, S. Sorkin, F
Mazzela, G. Thonier, A. Tellier, B. Lerman, A. Menon,
“Spring: A General Framework for Collaborative, Real-
time Surgical Simulation”, Medicine Meets Virtual
Reality, IOS Press, Amsterdam, 2002

[9] Gavin S.P. Miller, “The Motion Dynamics of Snakes
and Worms”, Computer Graphics, Volume 22, November
4 1998, pp169-178

[10] Jian Zhang, Shahram Payandeh and John Dill,
“Haptic Subdivision: an Approach to Defining Level-of-
detail in Haptic Rendering”, 10th International Symposium
on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, IEEE Computer Society, pp. 201-
208

[11] Matt LeDuc “Suture Simulation”, Internal Report,
Simon Fraser university, School of Engineering Science,
May 2002

	School of Engineering Science
	Abstract
	1. Introduction
	2. Deformable Objects
	2.1. Home Springs
	2.2. Node-position Integration Method

	3. Suture Model
	3.1. Suture Rendering

	4. Simulated Suturing
	4.1. Basic Suturing algorithm
	4.2. Multiple Slipping

	5. Endo Stitch Suturing Task
	6. Future Work
	References

