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ABSTRACT

Establishing a force-closure contact configuration between
multiple contacting agents such as dexterous fingers and an ob-
ject is one of the main requirements for further object manip-
ulation. Various tools and methods have been proposed in the
literature for such analysis and modelling. This paper extends
the previous results by the authors and by using basic notions
from screw geometry present some preliminary tools for a) locat-
ing the next contact wrench given any first two contact wrenches;
b) computing the grasping wrenches as a function of the external
wrench (force) and ¢) computing the local friction wrenches be-
tween the agents and object as a function of the external wrench.
The main contribution of the paper is the application of basic
tools from screw geometry and the associated algebra to the
problem of planning and analysis of forces in multiple contact-
ing agents.

1 INTRODUCTION

There has been a considerable body of literature in the
area of positioning the contact points on the object such
that when it is grasped, there exists an equilibrium between
all the forces[1][2][3]. In general, the condition of force equi-
librium (or force-closure) reduces to determining the rank
condition of a matrix, i.e. grasp matrix . If the matrix has a
full rank, then the configuration of the grasp allows any ex-
ternal forces to be counter-acted by the grasping forces. The
upper magnitude of grasping forces (i.e. internal forces) are
usually determined based on optimization methods[1][2][4].
In general, the upper magnitudes of grasping force are se-
lected which can ensure robustness of the grasp such that
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the object does not have any local slip between the agents.
This approach is usually very conservative since in general
the fingers at all time have to exert these forces on the ob-
ject. Although the above approaches have been followed by
many researches for further enhancements and extensions,
there has been very few who considered the geometrical
interpretation of the forces in the multi-agent contact in
determining various force-closure properties and the grasp
configuration[5][6][7][8][9]. This paper extends the previ-
ous definitions in the context which may give some geo-
metrical insight in determining a configuration of contacts
between the agents which can result in a force-closure con-
dition. In addition, it is shown how any external force can
be decomposed into the components of contact forces and
further into the net friction forces which are required in or-
der to avoid the slippage of the object between the agents.
The proposed method results in a closed form formulation
where it 1s shown an analytical form exists for such map-
pings. The results of this paper can be incorporated at
various stages in grasp planning and object manipulation
algorithms, e.g.[14][15][16]. The paper addresses the follow-
ing problems in grasp configuration in multiple agents:

e Given two independent grasping forces on the object,
what is a condition which the third grasping force must
satisfy in order for it to be linearly independent than
the other two.

e Given the grasping force vectors on the object which are
linearly independent, what is the closed-form solution
which can expand any external force into its compo-
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nents along the grasping forces.
e What are the relationships between the external forces
and the friction forces at the contact points.

The paper is organized as follow: section (2) presents
some definitions regarding the notion of screw geometry and
its associated algebra; section (3) presents a method for de-
termining the location of third contacting wrench on the
object for obtaining the force-closure properties; section (4)
presents a method for determining the magnitude of grasp-
ing wrenches in a force-closure grasp as a function of the
external wrench; section (5) summarizes an approach for de-
termining the direction and magnitude of the friction forces
between the three agents and object and finally section (6)
presents concluding remarks.

2 PRELIMINARIES

In this section we present a review of some basic defini-
tions from mechanics with their generalization in terms of
screw geometry[10][11]. Let us define the following vector
description between any given two points (p,q) in a rigid
body as:

X(q) = X(p) + wx x pg (1)

where X(.) and wx are vectors € R3. The above relation-
ship is a generalization of what has been referred to as the
moment field M in dynamics and velocity field (or infinites-
imal displacement) V in kinematic description of rigid bod-
ies. For example, one can state that the resultant force and
moment acting on a rigid body can be represented as a re-
sultant force wx = f along a line(axis) of action and the
resultant moment X(p) = m about the axis. Similarly, the
resultant motion of a rigid body can be represented by a
linear velocity v along an axis and the angular velocity w
about the axis. These definitions from mechanics of rigid
bodies are referred to as a wrench F and twist T of a body
respectively about a screw azis in screw geometry. Or,

F = (f;m) T = (w; V) (2)
where f is a force vector and m is the moment vector; w
is the angular velocity vector and v is the linear velocity
vector. The associated moment field M and the velocity
field V in terms of equation (1) can be expressed as:

M(p) =m+1 x op Vp)=v+wxdp

where p is any point in the moment or velocity field in the
rigid body and o is any point on the wx axis.

The vector field defined in equation (1) is generally re-
ferred to as a skew-symmetric or helicoidal vector field
D[I][10][11]. To this vector field there is associated alge-
braic operations. For example, let us define a vector U in
terms of two vectors X and Y belonging to D as:

U=wx X Y(p) —wy x X(p) (3)

where (p) is any point. The above operation is analogous
to ordinary vector cross product. This operation is written
as:

U=[X,Y] (4)

which is referred to as the Lie bracket operation e.g. see
[10][11]. Another algebraic operation which is defined in
D is the definition of the inner product (or Klein form)
between two of its members (this operation is analogous to
the ordinary scalar product):

X[ Y]=wx-Y(p) +wy X(p) ()

Two members of D are said to be reciprocal to each other
if [X | Y] = 0. This property has been extensively used in
the formulation of this paper. Another operation is referred
to as the Rilling form is defined as:

OX(p) = wx (6)

for example for the moment field the above operation will
result in the force vector associated with the field and for
the velocity field it is the angular velocity vector. In dual
vector formulation (see for example [11][12]), the operator
Q is the multiplication by ¢. For example, let us define a
member of D in form of dual vector or: F = f + em and let
us for now assume that the pitch of such skew-symmetric
field is zero. Hence, for a unit dual vector, F can be written
in terms of its Plucker line coordinates of its screw axis, or
f = (L,M,N) and m = (P,Q, R). From equation (6) we
have ¢F = ef where we have ¢2 = 0 and wx = f.

For the formulation of this paper, we also define the
following operation:

(X1Y)=[X[QY]=[2X Y]

Analogous to dual vector, the dual number z (i.e. mem-
ber of dual number ring A) [11][12] is defined as z = z + ey
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Figure 1. Definition of [X,Y].

with # and y are real numbers and with the property that
€2 = 0. The real and dual part of z are denoted by
Re(2) = ¢ and Du(Z) = y. Hence, the product of X € D

by a scalar z € A is defined as:

X = X + yQX

we also define dual inner product of two members of D as a
dual coefficient combination of the Killing and Klein inner
product, or:

(XY} = (X|Y)+eX|Y]

with the definition of the Lie bracket, we define the dual
triple product by:

(XY 2} = {X|[Y,Z]} (7)

As an example, let us define two members of D in a
form of dual vector representation as: F; and F3. Then
the Lie bracket between these two member in terms of dual
vector formulation can be written as:

F3:[F1,F2]:f1><f2+€(f1><m2+m1><f2) (8)

[F1, Fy] can be interpreted as a wrench that acts on a screw
whose axis 1s the common perpendicular to the axes of both
F, and F3, see Figure (1).

3 LOCATING A THIRD CONTACT POINT ON THE OB-
JECT

In general, contact locations between three agents and
an object is determined such that beside the grasp configu-
ration satisfying the force-closure requirement, it may also
has to satisfy other task requirements[2]. This section uses
the screw geometry of any given two grasping wrenches and
defines a condition for determining the location and orien-
tation of the third grasping wrench on the object.

Let F; and Fy be two linearly independent wrenches
representing the two grasping force vectors. The question
is where to position and orient the third grasping force on
the object in such a way that it is linearly independent than
the other two? In general it is stated that three linearly
independent grasping forces will always result in a force
closure grasp (i.e. in a three point contact with friction, the
rank of the grasp matrix is equal to 6).

There are many approaches which can be followed to lo-
cate the position and orientation of the third contact force.
Here, we utilize the geometrical properties which exist be-
tween wrench representation of the contact forces. Let Fy
and Fg be in D, then we define F3 = [F1,F3] (equation
(4)). This states that Fg can be obtained as a Lie bracket
of the other given two contacting wrenches.

By definition, the three wrench representation of the
forces F1, F5 and F3 are linearly independent. In summary
we can state that:

e F; and F are linecarly independent over Al

e ¢F; and ¢F; are linearly independent over real numbers
R;

o {F,Fy F3} are the basis of D over A.

The implication of the above condition is that the ori-
entation of F3 can be determined as a line parallel to
U = [F1,F,]. Essentially the above statement presents a
method where by finding the intersection of U with the sur-
face presentation of the object, one can determine a possible
location of the third contacting wrench Fs.

For example, let F3 be determined as in equation (8).
In general, the screw axis representing the wrench F3 can
be defined in terms of Plucker line coordinates as: F3 =
(f;m) = (L, M, N; P*,Q*, R*). A vector locating a point
on the axis can be determined as: [ = (f x m) € R3. Give
a vector [ expressed with respect to z,y and z coordinate
frame, the projected parametric equations of the screw axis
can then be written as: z =, + Lt, y =1, + Mt and z =

IThe set of vectors {r1,r2,--+,rpn}; is linearly independent over R.
if:
Ary 4+ Asra + oo+ Aprp =0
where Ay = XAy = -+ = Ay = 0 (X; is a real number). The set of
vectors {r1,ra2,--+,rn} are linearly independent over A is the same
property is verified for dual numbers A1, A, - -

 An.
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Possible intersections of the wrench axis
with the surface description of the object.

Figure 2. Definition of [X,Y].

[, + Mt where (I;,ly,l,) are the projection of vector [ and
t is a free parameter. It 1s now easy to find the intersection
of this parametric line with surface representation of an
object. Depending on the surface representation, there may
be more than one solution associated with the location of
the third grasping point (Figure (2)). In general, another
layer of planning has to be incorporated for selecting the
feasible contact points. A simple example of locating such
intersection point can be found in [13].

4 MAPPING OF AN EXTERNAL WRENCH TO LINEARLY
INDEPENDENT GRASPING WRENCHES

Let the three grasping wrenches Fq, Fy and F3 be in D.
If these wrenches are linearly independent, then we have:

i) {F1,F3, F3} is a basis of D over A.
ii) {€F1,eF,cF3} is linearly independent over space of
real number R.
iii) any external wrench W € D, can be expressed as W =

fiF1 + foFy + f3F3

where ﬁ (member of A) is a dual number multiplier of the
grasping wrench F;. fl,fz and fg can be determined as:

fj1 = L{W;F,;F3}
f3=E{W;F;F3}

there G = {Fy;Fy;F3}, fl = f1+ cfio, fz = fa + €f2, and
fa = fs + ¢fs, where the expansion of {-;-;-} is given in
equation 7.

For example, let the expansion of the external wrench
be given as:

W = fiF, + fuFy + f3F3 (10)

To determine f; we multiply both sides of equation (10) by
[Fy, F3], we have:

{W | [F2, Fa]} = f'{F; | [F2, F3]} (11)

Let P = [Fy, F3]. By definition, P € D. The axis of P is
perpendicular to the axis of F5 and F3. Hence, it can be
shown [Fy | P] = 0 and [F3 | P] = 0. Hence, P is reciprocal
to both F3 and F3. Then from equation (10) we can solve
for the dual number fl as:

fi = {W | [Fy, F5]}
{F1 | [Fa, F3]}

Similarly, one can solve for f2 and f3. Note that {Fy |
[Fg,Fg]} = {Fz | [Fg,Fl]} = {Fg | [Fl,FQ]} = G because

of symmetry of the inner product.

5 DETERMINATION OF FRICTION FORCES

Here the problem can be stated as given the magni-
tude of any external forces acting on the object, what are
the frictional components of the grasping forces which are
required in order to result in force equilibrium. Hence, as
a part of the iterative planning algorithm, the magnitude
of the grasping forces (i.e. normal component of the force)
can be adjusted such that as a function of the local fric-
tion coefficients, the slippage of the object can be avoided.
As a result, depending on the various manipulation tasks,
the grasping forces can be adaptively modified to counter
balance the external forces. Aspects of this problem are ad-
dressed in [5][6] and the following is an extension to some
of the previous results.

Here we assume that the local contact model follows the
Coulomb friction model and the grasping force F; € D can
be projected into normal and tangential components using
object local geometrical information, i.e. surface normals.
The question is that for a given external wrench and the
components of normal forces, what would be the required
local friction forces. The problem can be formulated as:

3 3
W= N =Wr=> fF; (12)
i=1 i=1
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Figure 3. Definition of screw representation of the grasp geometry.

where N; and F; are the local normal and frictional
wrenches. f; and n; are real numbers representing the in-
tensities of the corresponding wrenches.

Comparing with the previous solution methodology
where the external wrenches are mapped into the grasp-
ing wrenches F;, here we would like to map Wp which is
what we call the net wrench to the wrench representation
of the friction force at each contact point. Hence it is neces-
sary to define the conditions that can be used to determine
the bases of each tangent planes II; at local contact points
pi. To accomplish this objective we have defined a number
of auxiliary screw representations of the grasp configuration
using the local geometry of the grasp.

Let p be the intersection of the tangent planes defined
at the local contact points?. Let us define screws ¢; where
we;, = u; (equation (1)). wu; is a unit vector defined by
vector pp;. Let us also define screws X; such that X;(p;) =
Yi(pr) =0 (e.g. T1(p2) = E1(ps) = 0). Another words, the
axis of the screw X; is the line p;pr. The three screws X1, 3y
and Y3 form a three-system of screws 7. It is then always
possible to find screws which are in the plane formed by
three contact points py, ps, p3 and also they are in the local
tangent planes at each point. Such screws can be obtained
as:

i = [QN; | Zx]T; — [QN; | ;]38
At each contact point p;, & and 7; are the basis of all the

wrenches belonging to the local tangent plane TI;, i.e. [¢; |
7;] = 0. Hence, for a force-closure grasp, any wrench Wp

2Special cases where point p can not be located can be found in

(5](6]

Figure 4. Definition of screw S;.

(equation (12)) can be expanded as a function of the local
base screws, or:

Wr = ka&c + Yr Mk (13)

here zp and yg are the intensities along the base wrenches.

There are many approaches for solving for the intensi-
ties of these wrenches. The approach which is used here 1s
to define another set of auxiliary screws which are reciprocal
to all but one screw defined by {&;, n;}.

Let us define the screws S; (Figure (4)) which is the
intersection of the local tangent planes at contact points
p; and pg (special singular cases are considered in [5]). It
can be shown that the set of screws {81, 82, 83,21, Xy, X3}
and {&1,&2,€3,m1,712, 13} are bi-orthogonal in the sense of
inner product space defined in equation (4). For example,
referring to Figure (3) and the definition of the basis screws,
we can see that screw X is reciprocal to screws &3, g, X3,
N3, €2, M and 1. Hence, from equation (13) we can solve
for intensities:

oo — (W | 5]
O 2]

Similarly, we can solve for the wrench intensity y; by multi-
plying equation (13) by S;. Hence, we can obtain a solution:

_ [Wr | S
T TS
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6 CONCLUSIONS

This paper presented a summary and overview of some
of the tools from the algebraic geometry of the screw sys-
tems applied to the area of modelling and analysis of mul-
tiple contact configuration. It has shown for example how
the vector product operation in the space of screws can be
used to find a third linearly independent screw. The wrench
about this new screw can be used as a location where a third
grasping force can be applied on the object. Next, an an-
alytical solution for mapping any external wrench into its
wrench components was presented. Finally, a review of a
method for obtaining the components of the local friction
forces as a function of the external wrench is presented.
The geometrical framework of this paper can present itself
as an intuitive algebraic geometry approach which can be
extended to grasp planning and object manipulation frame-
works.
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