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Abstract

Manipulation of the grasped object is defined as the ability of the mechanical end-
effector to create an instantaneous motion of the object with respect to a fixed reference
frame (e.g. palm reference frame). This class of manipulation is usually referred to as the
fine manipulation whereas a collection of all these instantaneous motions of the object is
referred to as the gross manipulation. This paper presents a new method where for a given
desired twist of the grasped object, the instantaneous motions of the finger-tips can be
determined. The results of the paper are divided into two parts. First, for the case where
the motion of the object is created through motions of the finger-tip in off-tangent planes
to the object at the contact points. Second, where a class of motion of the grasped object
is achieved through motions of the finger-tips which are restricted to the tangent planes.
The method of this paper utilizes screw geometry, inner product spaces and information
regarding grasp configuration. The method is also illustrated through examples.

1 Introduction

Grasping task using dexterous mechanical end-effector is defined as the ability of the open-loop
mechanisms to make contact with the object such that the object does not slip between the
fingers. Manipulation of the grasped object is further defined as the ability of the mechanical
end-effector to create an instantaneous motion of the grasped object with respect to a fixed
reference frame (e.g. palm reference frame). This class of manipulation is usually referred to
as the fine manipulation where a collection of all instantaneous motion of the object is referred
to as gross manipulation.

Various methods have been proposed in the literature for determining the motion of the
grasping fingers in order to create the desired motion of the grasped object. Hong et al (1990)
presented several results on the existence of a certain three to four-fingered grasp being suitable
for fine manipulation when given some constraints on the geometry of the object. Yoshikawa
and Nagai (1991) presented a method for decomposing the finger-tip force into two components
by using pseudo-inverse of coefficient matrix that relates the resultant force exerted on the
grasped object to the fingertip force. One component is given by pre-multiplying the resultant
force by the pseudo-inverse of the coefficient matrix. This component is characterized as the
one with the minimum norm among those producing the specified resultant force. The other



component is given by a vector belonging to the null space of the coefficient matrix, is an
internal force. The first decomposed component is referred to as the manipulation and the
other as the grasping forces. Rus (1992) suggested a strategy for dexterous manipulation called
finger tracking. The reorientation of the grasped object is planned by finger tracking on the face
of an object whose motion is constrained by a set of fingers fixed in space. In this way, the re-
orientation is accomplished by simple sliding motion of the tracking finger. Kao and Cutkosky
(1992) proposed a method where manipulation of the grasped object can be accomplished by
sliding action of one finger on the face of the object. The sliding trajectories are characterized
by a transient and steady-state solution. By classifying the configuration of fingers grasping
an object as a configuration of parallel chain manipulator, Kumar (1992) proposed a method
based on screw system for obtaining transformation equations between joint coordinates of the
fingers and the corresponding finger-tip displacements. For this method, it is assumed that the
desired finger-tip displacements are given. Hunt, Samuel and McAree (1991) presented special
configurations of multi-finger, multi-freedom grippers. Given the kinematic model of a three
fingered hand where each finger has three revolute joints and using screw theory they showed
that the grasped object can lose and gain freedom in certain special configurations. In their
analysis for both serial and parallel manipulators, the twist of the end-point or the work-piece is
obtained through inversion of a known matrix. The above paper does not address the problem
of resolving the desired twist of the grasped object into the finger-tip twists which is the scope
of this paper. In particular, the results of this paper can be extended to complement the results
of Hunt, Samuel and McAree (1991) by not requirering the inversion of the know matrix for
determining the twist of the grasped object as a function of the twists of the each finger joints.

This paper proposes a new method for determining the twist of the fingers as a function of
the desired motion of the grasped object. The method is divided into two parts: a) when the
motion of the finger-tip is an off-tangent plane to the object at the contact point and when
the motion can be restricted to the tangent plane. The method of this paper, similar to Hong
(1990), Yoshikawa and Nagai (1991) and Rus (1992) utilizes the geometrical information of the
grasped configuration to determine the instantaneous motion of the finger-tips as a function of
desired motion of the object. The method of this paper utilizes screw theory and reciprocal
systems of screws.

The paper is organized as follow: section (2) presents preliminary definitions concerning the
three fingered grasp; section (3) presents a method for determining the off-tangent plane twist
of the finger-tips as a function of the desired motion of the grasped object; section (4) presents
a method for determining the tangent plane motion of the finger as a function of the desired
grasped motion and section (5) presents concluding remarks.

2 Preliminaries

This section presents preliminary definitions which are used in this paper. In this paper it is
assumed that fingers are making point contact with friction and grasped objects are made of
solid material.



2.1 Helicoidal Field
Let X define a vector field (helicoidal field) X : ¢ — & such that: (Figure (1))

X(b) = X(a) + wx x ab (1)

where a and b are any two points belonging to the tridimensional affine Euclidean space ¢ and
& is the underlying vector space, Chevallier (1991). This is equivalent to say that for every pair
of points (a, b) in €, there exists a vector wx such that equation (1) holds. Let D represent such
helicoidal field.

For example, when the velocity of a rigid body is described by the twist 7" = (w;u), the
helicoidal velocity field V', is related to T' by:

V(p) =u+wxap (2)

where p is any point in e. In particular, for the origin o, we have: V(o) = u.
For a wrench W = (f;g), the associated helicoidal field M (that is the moment field) is
defined as:

M(p) =g+ fxop (3)

where for the origin o, we have: M (o) = g.



For X and Y in D, let us define the real number:
(X[ Y] =wx -Y(p) +wy - X(p) (4)

In general, the above relationship is independent of the choice of p in ¢ (The above operation is
also referred to as the inner product or the Klein form of screws. We use the word inner product
even though the Klein form is not positive definite. It should be pointed-out that no positive
definite inner product exists in screw theory which is invariant by the Euclidean group). For
example,

W T =u-f4+w-g a real number

The relationship [X | Y] = 0 means that the screws are reciprocal.
We further define operation 2. If X € D, then QX is the constant vector field given by:

OX(p) = wx for all p € € (5)

Hence 92 = 0.

2.2 Definition of Three-Fingered Grasp

We defined three-fingered grasp by three points (p1, pa, p3) specifying the finger/contact coordi-
nate systems and the direction of the normal to the surface of the object at the contact points

(Figure 2).
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Figure 1: General definition of helicoidal field



Along each surface normals, we define normalized screws vy, vy and v, where for ¢ = 1,2, 3
we have:
[Vi | QZ/Z] =1

p; € axis of y;

(6)

The screw v; describes the oriented normal to the surface of the grasped object at the point
p;. These screws are defined by screws with zero pitch. For example, the normal component of
the grasping force which acts on the object at point p; is described by N;v;, where N; is a real
number (V; € R) representing the intensity of the normal force.

Let 1I; denote the tangential plane at p;. Let Z; be the vector subspace of D which is defined
as

Z = {XeD|X(p)=0) (7)

For a finger-tip twist 7" belonging to Z;, its axis passes through the grasping point p; (i.e.
the value of the associated helicoidal vector field at the point p; is zero: T'(p;) = 0).

In section 3.2 we shall consider the case of twists which have a moment about the point p;
lying in the plane II;.

3 Main Results

The main results of this paper are divided into two parts; a) the off-tangent plane manipulation
and b) tangent plane manipulation.

3.1 Off-Tangent Plane Manipulation
Let us define the normalized screw ¥; (¢ = 1,2,3) as (Figure 3):

Yi(ps) = Xi(pr) = 0. (8)

i.e. the axis of 3; is the line p;py.
The screws ¥ , Yo and X3 generate a three-system of screws, that is to say a vector subspace
T of D which can be defined as the set of all the elements:

o Xy + Xy + asXs with o, a0, 03 € R 9)

For ¢ € ¢, let Z. be the vector subspace of D defined by:
Z.={X|X(c) =0} (10)

and also, let us define screws ¥ , ¥, , U3 € D such that:
Vi(pi) = Wi(e) =0 (11)

Let us think of the point ¢ as the center of a spherical joint (the wrist) and the points py, po
and ps as particles belonging to the grasped object (and which are moved by the finger-tips).
The screw systems Z. and 7 describe simple motions relative to the conditions of the grasp.



A twist of the object which is described by a member of Z. is a rotation about the point
¢ and can be produced by a motion of the wrist alone. In particular, ¥; describes a rotation
about the line ¢p;: the contact point p; remains fixed whereas p; and p; move.

A twist of the object which is described by a member of 7 is a rotation about an axis lying
in the plane p;psps and can be produced by the motion of the fingers. In particular ¥; describes
a rotation about the line p;p;: the contact point p; is moved whereas the contact points p; and
pr remain fixed.

The following proposition explains how any twist of the grasped object resolves into these
simple motions and how to produce a given twist of the grasped object.

Proposition 1 If points ¢, py, ps, p3 are not in a same plane, then:
D=TaZ, (12)

Moreover {¥1, 35,35, Wy, Wy, W3} is a basis of D such that ¥q,%5,%3 € T and Uy, Uy, U3 €
Z..

Proof: The proof follows from the fact that for ¢ # j all the inner products [¥; | Y],
[ZZ | \I/]‘], [\I/Z | \I/]] vanish. O
Let T € D be a twist of the grasped object. Then this twist can be expanded as:

3 3
T=> % +> 3V z.y€R (13)
=1 =1

where z; and y; are the magnitudes of the screws.

The corresponding amplitude of the twists about the defined basis can be obtained by
forming the inner products of ¥; and W; with both side of equation (13) respectively we can
obtain:

[T | 3] = wi[ S | Wi [T | W] = a;[% | ¥y

The assumption that py, p2, ps and ¢ are not on the same plane implies that [¥; | W;] # 0 and
we can solve for the amplitudes of the twists as:
[T | W] [T | %]

SEEw YT (14

Hence, the desired twist of the grasped object can be obtained as a linear combination of ¥;

and W,.



Example 1: A cylindrical object of radius 1 is grasped as is shown in the Figure. The
contact points are given as: p; = (1,0,0),p2 = (—0.5,0.866,0.) and ps = (—0.5,—0.866,0.).
The objective is to determine the twist of each finger which can result in the desired motion of
the grasped object defined by:

a) T=2%;;
b) T =(0,0,1;0,0,0) , ( i.e.rotation about the z — axis) and
¢) T=1(0,0,0;0,0,1), (i.e. translation along the z — axis).

From definition, the screws };,Y, and X3 which are normalized screws through points
(p2,p3), (ps, p1) and (p1, p2) respectively are determined using the following general Plicker line
coordinates representation, i.e. for two point p; = (x;,v:, 2;) and p; = (x5, y;, ;)

L:l’]‘—l‘i

M =y; —y;
N = 25— %
P = yiN — ZZM (15)
Q = ZZL — J}ZN
R = J}ZM — yiL
the normalized screw 1,35 and Y3 can be obtained as: (screws with zero pitch)
¥ = (0,-1,0;0,0,0.5)
¥, = (0.866,0.5,0;0,0,0.5) (16)
Y3 = (—0.866,0.5,0;0,0,0.5)

Let coordinates of point ¢ be defined as (0,0, 1). Based on the definition of ¥;, and following
equation (16), we have the following description:

U, = (1,0,—1;0,1,0)
(—0.353,0.612, —0.707; —0.612, —0.353, 0) (17)
U, = (—0.353,—0.612, —0.707;0.612, —0.353,0)

5
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tangent plane

Figure 2: Definition of contact points and the oriented normals to the surface of the grasped

object
, \
H
i
/ \
!
774 ,, Z1
/ \
{ H
// \ ; \ /
N 7 i H N
N / | 7 A
7 | ! \ I
N 7 L»L wwwwwwwwww P
,,,,,, L A0 -7 133
e /\ / e
. e = S S — R
’ N P
Z / N oy / -
2 / e ! Pad
/ Ny -
/ 4 N -7
’
,/ 4
’ // Z
O
’
’
e
e
’ Uy
/%
v,

Figure 3: Definitions of 3; and W; in the three fingered grasp



From these screw descriptions representing the geometry of the grasp, we have the following
magnitudes for the inner products defined in equation (14):

S0 [ 0] = =15 [ U] =0 [X | W] =0

(X2 | W]
[Ya | W4]

[N, | Wa] = —1.058 [ | Ws] =0 (18)

=0

For case a), we have the following decomposition of the desired twist T into its components
(i.e. the trivial case). For this case, [T | ¥;] = 0and [T | ¥;] =0for¢ = 2,3 and [T | ¥1] = —1.5
. As a results, we have:

T =(0,-1,0;0,0,0.5)

Figure (5), shows the schematics of the manipulation of the object for this case. In this example,
since the axis of twist is X, the contact point p; has instantaneous rotation in a circular path
about the axis pyps.
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For the case b), the desired twist of the object is defined as the rotation about the z — axis
or T =(0,0,1;0,0,0). Here, the nonzero inner products are calculated to be:

[T [ %] =[T[X]=[T|X]=05

Following equation (13), the desired twist of the object can be obtained by the sum of the twist
of each finger-tips, or

T =y Uy + 2y + y3Us

where y; = —0.333, y2 = —0.472 and y3; = 0.472 are the amplitudes of the twists about Wy, ¥,
and Ws.

Figure (6) shows an example of accomplishing the desired twist of the object T by sequen-
tially holding finger ¢ fixed while moving the fingers j and & such that the final desired twist of
the object is accomplished. Another alternative would be to rotate the wrist without moving
the fingers.

To verify the expansion we can write:

T = —0.333(1,0,—1;0,1,0) — 0.472(—0.353,0.612, —0.707; —0.612, —0.353, 0)
—0.472(—0.353, —0.612, —0.707; 0.612, —0.353, 0)
= (0,0,1;0,0,0)
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Figure 4: The grasp configuration of Example (1)

Path of the finger-tip

Figure 5: Schematics of fine manipulation of Example 1la
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For the case ¢) where the desired twist of the object is given as translation along the z —axis

or: T =1(0,0,0;0,0,1). For this case, [T | ¥;] =0 for ¢ = 1,2,3 and we have:
[T | W] = [T | U] = [T | 5] = 0.663

As a result, the desired twist of the object can be obtained by sum of the twists about ¥y, ¥,
and Y3. Or,

T = 0.666(0,—1,0;0,0,0.5) 4+ 0.666(0.866,0.5,0;0,0,0.5)
0.668(—0.866,0.5,0;0,0,0.5)
or = (0,0,0;0,0,1)

3.2 Tangent Plane Manipulation

Previous subsection presented a method for determining the desired twist of the grasped object
by the sum of the twist of each finger-tip. The results were obtained by assuming that there
exist no restriction on the motion of each finger-tip and they can be in any off-tangent planes.
In some cases it may be required to restrict the motion of each finger to the plane which is
tangent to the object surface at the contact points.

This section presents a method for resolving the desired twist of the object into the sum
of the three twists such that their respective values at the grasping points p;, py and p3 are
directed as the tangential planes Iy, II; and II3. It is noteworthy that in such manipulation,
beside lying in the planes 11y, II; and I3, the velocities of the finger-tips must agree with the
rigidity of the grasped object and their values can not be set arbitrarily.

Let U be the vector subspace of D defined by:

Ted—=TeD and T(p;) is directed as II; for 1 = 1,2,3

For a given twist of the grasped object T, the component of the twist which makes a motion
along the normal to the tangent surtace at p; can be written as:

[T | vi] = T(p;) - ni

where n; is the normal vector to the tangent plane. Hence, twist inducing tangent velocities at
p1, P2, p3 make a three-system of screws defined by:

TecedA<—= TecDand [T|r]=0fori=1,2,3 (19)

In other words U is the system of screws which are reciprocal to the three screws vy,r5 and
v3. If the rank of the {1y, vy, 13} is three the dimension of i/ is also three.

Proposition 2 If the rank of {v1,v2, 3} is three, there exists ©1,05, 03 € D with the following
properties:

1. (01,04,03) is a basis of U
2. 0;,€ Z; for1=1,2,3.

13



Proof:

To prove the existence of ©;, let us calculate w; the invariant vector of ©;. We have:
O;(p;) = wi X pip;, Oi(pr) = wi X pipr (20)

The above condition state that ©; € Z;. In addition from (20) we can deduce that:

(wi X pibj) - nj = wi - ((piDj) X nj)) =0 1)
(wi X pipr) -k = w;i - ((pipr) X ng)) =0
A solution is:
wi = (n; X pip;) X (nk X piPr) (22)

a.

Example 2: Figure (7) shows three points contact between a dexterous mechanical end-
effector and a polyhedral object. The objectiveis to give the object a twist with a unit amplitude
with respect to the coordinate frame of the object defined as: T = (0.577,0.577,0.577;0.0,0.0,0.0).
The constrained on the manipulation however is that the instantaneous motions of the finger-
tips are restricted to their corresponding tangent planes.

14



From the geometry of the grasp configuration, the contact point coordinates and the corre-
sponding unit normals to the tangent planes can be written as:

P = (07272) ;7 = (17070)
P2 = (27072) ;o N2 = (07 170)
P3 = (27270) ;o N3 = (0707 1)

Following Proposition 2, we can see that the rank condition for the grasp configuration is
satisfied. To solve for the invariance of the twist axis w;, from Equation 2 we have, for example,
pib2 = (24,05, =2k) and pip; = (21, —25,0k). Then we have: wy = (n2 X pip2) X (n3 X pips)
which results in wy = (4¢,07,0k). Similarly we can obtain wy = (01, j,0k) and ws = (04,07, k).
Having w; and a point on the its axis, namely p;, from the line coordinates defined in Equation
15, we can determine the coordinate of the twist axis O; as follows:

®, = (1,0,0;0,2,2)
®, = (0,1,0;—2,0,2) (23)
® = (0,0,1;2,—2,0)

From the grasp configuration, the coordinates of the screws ¥, 35 and Y3 can be determined
as(note: ¥;(p;) = Xi(pr) = 0):

Y = (0,0.707,0.707; —1.414,1.414,1.414)
Yy = (—0.707,0.0,0.707; 1.414, —1.414,1.414) (24)
Y3 = (0.707,—0.707,0.0;1.414,1.414, —1.414)

From proposition 2 we have the following expansion between the desired twist of the object
and the basis ©;, or:

T = Oé1®1 —|— OéQG)Q —|— Oé3®3 (25)
By definition, the following relationships exists:
[0: | 5] =1[0:]X] =0 for i # j, k (26)

Forming the inner product of the screw ¥; with both sides of equation (25) and solving for the
amplitudes «; of the twist along O;, we have:

(T X

Y

[T | 3]
oy = 0, [ (27)

oy = [T | Xs]

(O3 | Xs]

or,

a1 = 0577y = 0577 as = 0577 (28)

The tangent plane manipulation can be accomplished using two approaches. One is that
each finger-tip at their points of contact with the object create a twist ©; with the amplitude
a;. Second approach can be that for each contact point, the resultant velocity can be resolved
by (O©1(p2), Os(p2)), (O2(p1),Os(p1)) and (O1(p3), O2(ps)). These resultant motions at each
contact point can then be created by each finger-tip which by the Proposition 2 are in the
tangent planes.

15
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a) b) c)

Figure 6: Schematics of fine manipulation of Example 1b. a) is the twist about Uy by magnitude
of 1, b) is a twist about Wy by magnitude of y, and finally ¢) is the twist about W3 by ys.

y

Figure 7: Schematics of the grasp configuration of Example 2
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4 Conclusion

Establishing a secure grasp such that the object can not slip between fingers of a dexterous
mechanical end-effector is one of the main requirements in robotic pick-and-place operations.
In addition to this requirement, in most cases it may also be necessary for the fingers to displace
or reorient the grasped object for accomplishing a given task.

In this paper, a method for resolving the desired twist of the grasped object into the instan-
taneous motions of the finger-tips is presented. The results for both tangent and off-tangent
planes manipulation of the grasped object at the contact points are presented.

The method of this paper offer an elegant and effective method for determining the motions
of the finger-tips as a function of the grasp geometry. The method utilizes screw geometry,
linear vector and the inner product spaces. The results of this paper are demonstrated through
two examples.
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