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Abstract

When grasping an object using three fingered end-effectors, a certain geometrical en-
tity can be created based on the grasping points and a definition of an auxiliary point.
This geometric configuration is referred to as the invariant configuration of the three fin-
gered grasp. This paper exploits the geometric properties of such configuration using
screw theory and inner product spaces. The results are shown to present themselves as
an elegant and efficient framework in calculating the friction forces between the fingers
and the grasped object and/or in defining the instantaneous motion of the finger-tips in
accomplishing the desired motion of the grasped object.

1 Introduction

When grasping objects with a dexterous mechanical end-effector, the contact between the fingers
of the hand and the object must satisfy a number of conditions'*?. These range from the force-
closure to stability conditions such as, ensuring that the grasped object does not slip between
the fingers. Manipulation of the grasped object is further defined as the ability of the mechanical
end-effector to create an instantaneous motion of the grasped object with respect to a fixed
reference frame (e.g. palm reference frame).

Authors of* were among the first to consider the problem of computing the friction forces
between the finger-tips and the grasped object as a function of the external forces. Their
approach takes advantage of the grasp configuration and the screw geometry. However, their
method did not take advantage of the fundamental coordinate free property of screw systems
and it was rather an algebraic approach. Various methods have been proposed in the literature
for determining the motion of the grasping fingers in order to create the desired motion of the
grasped object. Several results on the existence of a certain three to four-fingered grasp being
suitable for fine manipulation when given some constraints on the geometry of the object was
presented by®. A method for decomposing the finger-tip force into two components by using
pseudo-inverse of coefficient matrix that relates the resultant force exerted on the grasped object
to the fingertip force was presented by®. The first decomposed component is referred to as the
manipulation and the other as the grasping forces. A strategy for dexterous manipulation
called finger tracking was proposed by’. The reorientation of the grasped object is planned
by finger tracking on the face of an object whose motion is constrained by a set of fingers
fixed in space. In this way, the re-orientation is accomplished by simple sliding motion of the



tracking finger. A method where manipulation of the grasped object can be accomplished by
sliding action of one finger on the face of the object was suggested by®. The sliding trajectories
are characterized by a transient and steady-state solution. By classifying the configuration of
fingers grasping an object as a configuration of parallel chain manipulator, a method based on
screw system for obtaining transformation equations between joint coordinates of the fingers
and the corresponding finger-tip displacements was proposed by?.

This paper presents an elegant and efficient framework which can be used for calculating
the friction forces as a function of the external force acting on the grasped object and the
instantaneous properties of the finger-tips as a function of the motion of the grasped object.
The method improvises the geometric properties of the grasp object and the grasp configuration
to define a new geometrical entity. Then based on screw geometry and inner product spaces,
an elegant and efficient approaches are presented to map the external force into the required
friction forces and the desired grasped object motion into the corresponding finger-tip motions.

This paper is organized as follows: section (2) presents some preliminaries definitions; section
(3) presents the main results of the paper and section (4) presents a sample example and finally
section (5) presents concluding remarks and future work.

2 Preliminaries

Let X define a vector field (helicoidal field) X : ¢ — & such that (Figure (1)):
X(b) = X(a) + wx x ab (1)

where a and b are any two points belonging to the tridimensional affine Euclidean space ¢ and
& is the underlying vector space'®.

This is equivalent to say that for every pair of points (a,b) in e, there exists a vector wx
such that equation (1) holds. Let D represent such space.

For example, when the velocity of a rigid body is described by the twist 7" = (w;u), the

helicoidal velocity field V', is related to T' by:
Vip) = utwx b 2)

where p is any point in ¢. For a wrench W = (f;g¢), the associated helicoidal field M (that is
the moment field) is defined as:

M(p) =g+ [ xdp (3)
For X Y € D, let us define the real number:

X Y] =wx - Y(p) +wy - X(p) (4)

In general, the above relationship is independent of the choice of p in ¢ (The above operation is
also referred to as the inner product or the Klein form of screws. We use the word inner product
even though the Klein form is not positive definite. It should be pointed-out that no positive
definite inner product exists in screw theory which is invariant by the Euclidean group). For
example,

W T =u-f4+w-g a real number
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Figure 1: General definition of helicoidal field



The relationship [X | Y] = 0 means that the screws are reciprocal.
We further define operation 2. If X € D, then QX is the constant vector field given by:

OX(p) = wx for all p € € (5)

Hence 92 = 0.

2.1 Definition of Three-Fingered Grasp

We define three-fingered grasp by three points (p1, p2, ps) specifying the location of the fin-
ger/contact coordinate systems and the direction of the normals to the surface of the object at
the contact points.
Along each surface normals, we define normalized screws vy, vy and v, where for ¢ = 1,2, 3
we have:
[Vi | QZ/Z] =1

p; € axis of y;

(6)

The screw v; describes the oriented normal to the surface of the grasped object at the point p;.
These screws are defined by screws with zero pitch.

Let 1I; denote the tangential plane at p;. Let Z; be the vector subspace of D which is defined
as:

Z={XeD|X(p) =0} 7)
and let F; be the vector subspace of Z; defined by:

Fi={XeD|X(p) =0,[X| Q] = 0}

where v; € Z; (Figure 2). For example, for a finger-tip twist 7" belonging to Z;, its axis passes
through the grasping point p; (i.e. the value of the associated helicoidal vector field at the point
pi is zero: T(p;) = 0).

3 Main Results

In this section we seek to explore a geometric entity in the configuration of the three fingered
grasp which is then exploited in devising a method for finding the bases of the twist and wrench
spaces. In other words, if B = {X;, X3, X3, X4, X5, X} is a basis of D, then the expansion of
X € D with respect to B can then be written as:

X =Xy 40Xy + 05X 4+ 0,Xy 4 05X5 + 06X

where §; € R. In the three fingered grasp, the basis of D can be identified by defining the vertices
of a tetrahedron where vertices consist of the grasping points and to be defined auxiliary point
p (we call this tetrahedron the invariant configuration of the three fingered grasp (Figure (3)).
Let the vectors u; be directed along the edges of this invariant configuration. Let X; € D be
defined as:

wx, =y

Then (X4, --,Xs) is a basis of the D.
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Figure 2: Definition of a three-fingered grasp
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Figure 3: Definition of the invariant configuration in the three fingered grasp



In the following, the objective is to define such invariant configuration of the grasp where a

wrench W and a twist T can be expanded to their corresponding values at the grasping points.
Let the normalized screw S; (¢ = 1,2,3) is defined such that:(Figure (4))

S; =1, N1l , if II; and Il are not parallel
Si = Qu; , if 11 and Il are parallel

When II; and IIj are parallel, Qv; = +Qv;, and we can also have &; = Q.
The normalized screw ¥; (¢ = 1,2,3) is also defined such that:(Figure (5))

Yi(pj) = Yi(pr) = 0.

i.e. the axis of 3; is the line p;py.
The screws X1, Yo and Y3 generate a three-system of screws 7, that is the set of screws:

06121 + OéQZQ + oz323 with Qq, 05, 3 € R (8)

which is also the set of screws with zero pitch and with axis lying in the plane py, po, ps.

Let u; be the normalized vector along the line pp; where point p is the intersection of all
the tangent planes II; (Figure (6)). Whenever p is at infinity in the case where 14,15 and
v3 are parallel to the same plane or when two tangent planes are parallel, we may choose
Uy = Uy = Uz = U.

Let us also define &; be the such that:

& € Zy, we,

7

=, i=1,2,3,

then & € F;, v =1,2,3.

For all ¢, it is possible to choose a screw n; such that:
n, € FxNT, and n; # 0. 9)
A screw n; like it was defined in equation (9) is in Z; if o; = 0, that is if:
N = a;2; + o, o, €ER

In order for this screw to be also in F; it is necessary that,

[Qu; [ 9] = [Qi | ;E; + anXy] (10)
= ;5 [QZ/Z | Z]] + (843 [QZ/Z | Zk] =0 (11)
Solving for «; and a4, we have:
a; = [Qu; [ 3], ar=—[Qu | Y],
and thus
ne = [Qu; | B X5 — [Qu; | 8] Xk (12)
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Figure 4: Definition of screw &;

Figure 5: Definition of screw 3;
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For each 7; ¢ and n; are linearly independent screws and therefore, {&;,n;} is a basis of F;.
Let W be a wrench acting on the grasped object. Then this wrench can be expanded into the
friction forces at the contact point as:

3
W = @le +yrme, @k yk € R, (13)
k=1
then,
(W I[S] = vilni| S
(W[ X] = a6 | 2]

If (p1, p2, p3, p) are not in the same plane implies that [¢; | ¥;] # 0 and [; | S;] # 0 and the
solution is: x; = [£z|1—21] W | X,] and y; = m W | S

Similarly, one can exploit the geometry of an invariant configuration of the three fingered
grasp for determining the instantaneous motions of the finger-tips as a function of the desired
motion of the grasped object.

Here let point p € ¢, and Z, be the vector subspace of D defined by:
Z, ={X | X(p) =0} (14)
and also, let us define screws ¥ , ¥, , U3 € D such that:

Wi(pi) = Vi(p) =0 (15)

Let us think of the point p as the center of a spherical joint (the wrist) and the points py, ps
and ps as particles belonging to the grasped object (and which are moved by the finger-tips).
The screw systems Z, and 7 (equation (8)) describe simple motions relative to the conditions
of the grasp.

A twist of the object which is described by a member of Z, is a rotation about the point
p and can be produced by a motion of the wrist alone. In particular, ¥; describes a rotation
about the line pp;: the contact point p; remains fixed whereas p; and p; move.

A twist of the object which is described by a member of 7 is a rotation about an axis lying
in the plane p;psps and can be produced by the motion of the fingers. In particular ¥; describes
a rotation about the line p;p;: the contact point p; is moved whereas the contact points p; and
pr remain fixed. In other words, points p, p1, p2, ps are not in a same plane, then:

D=Ta Z, (16)
Moreover {¥1, ¥o, Y3, Uy, Wy, U5} is a basis of D such that ¥y, 35,35 € T and Uy, Uy, U5 € Z,,.
Let T € D be a twist of the grasped object. Then this twist can be expanded as:

3 3
T=> #%+> vV z,u€R (17)
=1 =1

where z; and y; are the magnitudes of the screws.
The corresponding amplitude of the twist about the defined basis can be obtained by forming
the inner products of ¥; and U; with both side of equation (17) respectively we can obtain:

[T | 3] = wi[ S | Wi [T | W] = a;[% | ¥y



Assuming that points pq, p2, ps and p are not on the same plane (which in general the case)
implies that [¥; | ¥;] # 0 and we can solve for the amplitudes of the twists as:
[T | W] [T | %

TR USRI .

Hence, the desired twist of the grasped object can be obtained as a linear combination of ¥;

and W,.

4 Example

A cylindrical object of radius 1 is grasped by three fingers. The contact points are given
as: p1 = (1,0,0),ps = (—0.5,0.866,0.) and ps = (—0.5,—0.866,0.). The normalized screws

representing the contact normals (ny,ng, n3) are written as:

v = (=1,0,0;0,0,0),
v, = (0.5,—0.866,0.0;0,0,0),
vs = (0.5,0.866,0.0;0,0,0).

The objectives is to determine the required friction forces between the finger-tips and the
grasped object and to determine the twist of each finger which can result in the desired motion
of the grasped object defined by:

a) T=2%;;
b) T =(0,0,1;0,0,0) , ( i.e.rotation about the z — axis) and
¢) T=1(0,0,0;0,0,1), (i.e. translation along the z — axis).

From the definition, for the case when vy, v and v5 are parallel to the same plane, we choose
uy = uy = uz = u = (0,0,1). As a result the normalized screws &;,&; and & can be computed

to be:
51 = (07071;07_170)7
& = (0,0,150.866,0.5,0),
& = (0,0,1;—0.866,0.5,0).

From definition, the screws ¥, Y5 and Y3 which are normalized screws through points (pz, ps),
(ps,p1) and (p1, p2) respectively are determined using the following general Plicker line coor-
dinates representation, i.e. for two point p; = (@;,v:, ;) and p; = (2, y;, 2;):

L:l’]‘—l‘i,

M =y; -y

N:Z]‘—ZZ',

P=yN -z M, (19)
Q:ZiL—J}iN,
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the normalized screw 1,35 and Y3 can be obtained as: (screws with zero pitch)

¥ = (0,-1,0;0,0,0.5),
¥, = (0.866,0.5,0;0,0,0.5), (20)
Y3 = (—0.866,0.5,0;0,0,0.5),
similarly, §; can be computed to be:
S = (0,0,1;0,2,0),
S = (0,0,1;-1.732,—-1,0),
S = (0,0,1;1.732,—1,0).

From equation (12), we have:

m = (0,0.866,0;0,0,—0.433),
n2 = (—0.749,—-0.433,0;0,0, —0.749),
ns = (0.749,—0.433,0;0,0,—0.433).

Let the only force which can act on the grasped object be the object’s own weight of 10(1bf)
acting at its center of gravity located at point (o) or, W = (0,0,—10,0,0,0). Then, we can
compute [W | ¥;] = =5 for (¢ = 1,2,3). Also, for the grasp configuration of this example we
have: [W | §;] =0 for (¢ = 1,2,3). The product [¢ | ¥;] = 1.5 for ¢ = 1,2, 3.

Therefore, the friction forces associated with the three-fingered grasp configuration are com-
puted to be:

Fr = x4 = (0,0,-3.33;0,3.33,0),
Fy = a6 = (0,0,—3.33;—2.883, —1.665,0),
Fs = a3¢ = (0,0,—3.33;2.883,—1.665,0).

Now for the case of manipulation let coordinates of point p be defined as (0,0,1). Based on
the definition of U; (equation (15), we can also obtain:

Y
Y

U, = (1,0,—1;0,1,0),
U, = (—0.353,0.612, —0.707; —0.612, —0.353,0), (21)
U, = (—0.353,—0.612,—0.707;0.612, —0.353,0).

From these screw descriptions representing the geometry of the grasp, we have the following
magnitudes for the inner products defined in equation (17):

(S| 0] = —1.5, [ [ W,] =0, [S|Ws]=0
(S | W] =0, [Ss] W) =—1.058, [X,]Ws]=0 (22)

[23 | \I/l] — 0, [23 | \IIQ] — 0, [23 | \113] — —1058

For case a), we have the following decomposition of the desired twist T into its components
(i.e. the trivial case). For this case, [T | ¥;] = 0and [T | ¥;] =0for¢ = 2,3 and [T | ¥1] = —1.5
. As a results, we have:

T = (0,—1,0;0,0,0.5)

11



In this example, since the axis of twist is ¥y, the contact point p; has instantaneous rotation
in a circular path about the axis pyps.

For the case b), the desired twist of the object is defined as the rotation about the z — axis
or T =(0,0,1;0,0,0). Here, the nonzero inner products are calculated to be:

[T [ X1] =[T| %] =[T|Xs]=0.5.

Following equation (17), the desired twist of the object can be obtained by the sum of the twist
of each finger-tips, or

T =V +y2¥s 4+ y3¥s3,

where y; = —0.333, y2 = —0.472 and y3; = 0.472 are the amplitudes of the twists about Wy, ¥,
and Ws.

The desired twist of the object T can be accomplished by sequentially holding finger ¢ fixed
while moving the fingers 7 and k such that the final desired twist of the object is accomplished.
Another alternative would be to rotate the wrist without moving the fingers.

For the case ¢) where the desired twist of the object is given as translation along the z —axis

or: T =1(0,0,0;0,0,1). For this case, [T | ¥;] =0 for ¢ = 1,2,3 and we have:
[T | W] = [T | U] = [T | 5] = 0.663

As a result, the desired twist of the object can be obtained by sum of the twists about ¥y, ¥,
and X;.

5 Conclusions and Future work

When grasping an object with dexterous mechanical hand, the contact points can be defined
in such way that the grasp can be in force closure. The other important consideration in such
interaction is the magnitudes of grasping forces that the fingers can exert on the object so the
slippage of the object can be avoided. There are two approaches to determine the grasping
forces, one is to select an upper bound on the grasping forces such that the slippage of the
object is avoided for a given range of the external forces. The other is to compute the expected
magnitudes as a function of the task forces and adjust the magnitudes of the grasping forces
on-line.

This paper presented an elegant method for computing the friction forces (i.e. grasping
forces) of the three fingered grasp as a function of the external force. In addition, a method
is presented to determine the magnitude of the finger-tips motions as a function of the desired
object motion. The method exploits the geometrical entity which is formed by the contact
points and an auxiliary point. The method uses screw geometry and inner product spaces.

The framework of this paper can be extended to include dynamic wrenches and the inertial
properties of the grasped object. Example of this can be the case when the object is picked
by three fingered end-effector and while being held between the fingers, the arm moves along a
certain trajectory. In this way, the results can be used in the real-time dynamics manipulation
of the object. This topic is currently under investigation.
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