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Abstract

This paper presents two object manipulation planning methods
based on fitted stratified and semi-stratified approaches using fin-
ger relocations. The problem is discussed in the framework of a
motion planning problem. The goal of the methods is to steer an
object from an initial configuration to a final configuration while it
is possible to reposition the fingertips on the surface in a predefined
way. We assume there is no rolling and sliding but finger relocations
are allowed. The first technique follows a pure stratified approach,
however unlike the previously published method, the exact kinematic
model of the manipulation system is matched with a virtual model
masking the behavior of the original system. This provides a simpler
model than the earlier stratified method by reducing the generally
hard symbolic computation problem to a simple (almost pure nu-
merical) one. The paper also introduces a semi-stratified manipula-
tion planning based on the newly defined fitted system. This second
method enhances the stratified motion planning with a definition of
systematic finger relocation sequence. The proposed decomposition
is based on the selection of suitable reference contact points. As the
main benefit, the method enables a greater freedom in defining the
desired fingertip trajectories. The methods are illustrated through
an example of object reorientation.
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1. Introduction

The coordinated object manipulation problem is composed
of a manipulation planning and a controlled implementation.
This work is toward the manipulation planning based on strat-
ified approaches whose eventual aim is to produce finger joint
trajectories that achieve a desired grasp via driving the ma-
nipulated object to a desired configuration.

There exist three categories of manipulation task for multi-
fingered hand systems: (a) object manipulation tries to reach
the desired object configuration without considering the con-
tact configuration; (b) grasp adjustment attains the desired
contact configuration by disregarding the object configura-
tion; and (c) dextrous manipulation leads the robot hand to its
final state, taking into account the desired object and contacts
configuration, respectively.

This paper is concerned with object and dextrous manip-
ulation, that is, it intends to lead the object into a desired
configuration while the fingertips reach the desired contact
points on the surface, if it is possible. (It will be seen that
the methods are restricted in a way to reach arbitrary contact
points.)

All the three strategies mentioned above need a contact
model to establish an unambiguous description between the
object and the robotic hand. Several contact models are dis-
cussed for example in Murray et al. (1994). Most planning
algorithms are concerned with either point contact without
friction, point contact with friction or soft finger contact mod-
els. The planners also incorporate fixed, sliding and rolling
contact points based on the friction model. A good overview
of the manipulation philosophies can be found in Bicchi and
Kumar (2000).
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Fixed contact points offer a simple object manipulation
philosophy where the location of the contact points does not
change relative to the object frame (Chevallier and Payandeh
1995). To accomplish a grasp adjustment Hong et al. (1990)
suggested a finger gaiting technique where the contacts are
temporarily broken during the finger relocations. Restrictions
arise when the fingers reach the limit of their workspaces.
This situation then requires a regrasping algorithm (Han and
Trinkle 1998).

The rolling contact is able to complete the object manipu-
lation, grasp adjustment and dextrous manipulation task, re-
spectively (Bicchi et al. 1998). Although this approach does
not need extra regrasping strategies, it may need a relatively
complex kinematic description. The literature on rolling con-
tact manipulation is very extensive. Some recently proposed
algorithms have been reported in Marigo and Bicchi (2000)
and Bicchi et al. (1997). In general, the manipulation algo-
rithm based on rolling contact expects fewer fingers than the
dextrous manipulation combining the fixed point and the fin-
ger gaiting. However, if the fingers reach the limit of their
workspace, rolling contact manipulation will also need a fin-
ger gaiting technique (Han and Trinkle 1998).

The sliding contact points can be adopted mainly for the
grasp adjustment tasks. Planning controlled slippage for im-
proving robotic dexterity has been studied in Cole et al. (1992)
and Payandeh (1997).

We assume throughout the paper that the contact points
are fixed, i.e., that sliding and rolling are not permitted. At
the same time, we allow finger relocations from a point of the
surface onto another one.

Dextrous manipulation involves many geometric, mechan-
ical and control aspects which can offer different levels of
coordination of a robotic hand. At the higher planning level,
the algorithm attempts to handle globally the manipulation is-
sue decomposing the problem into primitive, high level func-
tions. One may consider this strategy for convex polyhedra
and smooth objects (Rus 1999; Cherif and Gupta 1997; Gupta
2001) where contact points between the object and fingers are
always maintained. Our proposed solution to the manipula-
tion problem and other similar approaches (Omata and Fa-
rooqi 1996; Leveroni and Salisbury 1995) allow the reposi-
tioning of fingertips. Our paper approaches the manipulation
problem from the point of view of open loop control which
leads to a motion planning problem (MPP) with constraints.
Our paper may be placed between higher planning manipula-
tion planning and lower level manipulation strategies such as
Yoshikawa (2000) and Zefran et al. (1996), where dynamic
models are also regarded. In other words, lower level strate-
gies require a kinematic or dynamic model of the system.

Most techniques have studied a simpler, kinematic model.
The easier treatment comes from the fact that the kinematic
model has no drift in the equations. It means that the equa-
tions of motion can be written in the form ẋ = F(x)u, where
x is the state vector, and u is the input vector of the system.

It occurs also in this paper. As mentioned above, the ma-
nipulation task can be transformed into a general MPP with
constraints. Numerous motion planning algorithms (MPAs)
have been studied for smooth systems. They mostly employ
some machineries from differential geometry (Isidori 1996).
The main challenge appears by nonholonomic systems since
the control vector fields do not span the configuration space
in this case, although the system may be controllable. Several
approaches exist to solve the smooth MPP from different as-
pects (see, for example, Murray and Sastry (1993) and Kiss
et al. (2000)). From the viewpoint of this paper, the method
that pieces together a trajectory as a sequence of flows plays
a key important role because it leads the system (for example
a fingertip) along a specified trajectory. The sequence of the
flows is defined by the vector fields of the system (Lafferriere
and Sussman 1991; Sussmann 1992). The method implies a
precise solution for MPP of nilpotent systems.

In most dextrous manipulation (Han and Trinkle 1998;
Hong et al. 1990), object manipulation and grasp readjust-
ment are accomplished separately. It is especially valid for
dextrous manipulation planning using fixed contact points
and finger relocation. The reason is that different constraints
appear cyclically in the nonlinear system representing differ-
ent equations of motion. Although all the vector fields are
smooth, the compound system may not be smooth because
discontinuous inputs can change the equations of motion of
the system. Stratified motion planning (Goodwine 1998) of-
fers a general approach for the system whose (smooth) equa-
tions may change in the configuration space. This method
combines the object manipulation and the grasp adjustment
tasks into a unified dextrous manipulation problem (Good-
wine 1999). The key element of the method is to divide the
configuration space into smooth submanifolds (strata) where,
in each stratum, a different smooth nonlinear system is valid.
The method compounds these systems into a smooth com-
mon system later called the bottom stratified extended system
where, with some restrictions, smooth motion planning (MP)
can be applied. Stratified MPA delivers a unified dextrous
manipulation concept to solve this manipulation task. How-
ever, the approach has some drawbacks, where (sometimes
very hard) symbolic computational difficulties are the most
noteworthy (Goodwine 1999). In addition, it is also hard to
interpret the resulting trajectory.

This paper is concerned with object and dextrous manip-
ulation, where there is no rolling and sliding, but where fin-
ger relocation is allowed. We propose two new manipulation
algorithms adopting stratified MPA but their foundation is a
simple fictitious (fitted) system that reduces the complexity of
the computations to almost pure numerical procedures. They
also let one interpret the state trajectories easily from the re-
sults in the configuration space.

The first proposed method based on the philosophy of
stratified motion planning (Harmati et al. 1999, 2000b) uses
a special fictitious system called the fitted system. The
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special parameterization of the fitted system yields simple
vector fields where one also can easily check any system’s
property (e.g. stratified controllability) This method is able to
carry out a dexterous manipulation in a restricted workspace
of fingertips. However, the method does not ensure automat-
ically force closure stability and finger collisions.

The second proposed method is a semi-stratified motion
planning on a fitted system using task decomposition (Har-
mati et al. 2000c). Beside stratified MP, this semi-stratified
motion planning includes also a strategy for systematic finger
relocations. The finger relocations are based on a subsegment
generation procedure, which provides suitable chosen refer-
ence fingertip positions to a desired object motion. Hence,
the method restricts the fingertip positions (i.e., arbitrary fin-
gertip positions on the object cannot be achieved, causing
dexterity in manipulation to fail), hence it aims primarily at
object manipulation. In return, it is able to guarantee force
closure stability and collision avoidance. Additionally, it pro-
vides a greater degree of freedom in finger relocation than
fitted stratified manipulation because it allows any trajectory
in the free space for the fingertips.

To summarize, we assume fixed contact points without
sliding and rolling, however they can be relocated on the
surfaces. Additionally, we assume a kinematic model of the
manipulation system and force closure stability of the grasp-
ing. (The last one may be guaranteed by a sufficient number
of fingers.) Beside these conditions, fitted stratified and semi-
stratified manipulation is concerned in the frame of MPP using
finger relocations.

The paper is organized as follows. An example of dextrous
manipulation is defined in Section 2. Here, the robotic hand
is equipped with four fingers and the goal is to manipulate an
object of smooth surface. Section 3 gives an overview of strati-
fied MP. Stratified MP is based on smooth MP and operates on
sequences of flows. The solution of the smooth and stratified
MPP consists of the sequence of flows along the vector fields
of the system. The manipulation system will be investigated
as a stratified system in Section 4. Some issues appearing in
this section give motivation to develop new methods. We pro-
pose a new manipulation method based on the fitted model
in Section 5. Its modified version, the semi-stratified manip-
ulation, is presented in Section 6. Finally, simulation results
are presented in Section 7, highlighting the different features
between the proposed and the earlier stratified approach.

2. Manipulation Example

The results of this paper will be demonstrated using an ex-
ample. This section introduces this manipulation system and
presents some notations used in the remainder of the paper.
The algorithms suggested in the next section are introduced
via an egg-shaped object manipulation. The x, y and z co-
ordinates of the surface points (Goodwine 1999) shown in
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Fig. 1. The manipulated object with the 4 initial contact
points (denoted by ∗) in the plane z = 0. The task is a rotation
around [1 0 1]T . (z axis is directed upwards.)

Figure 1 are parameterized by the equation
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) cos u cos v
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π
) cos u sin v
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sin u


 ,

u ∈ (−π
2
, π

2
)

v ∈ (−π, π),

(1)

where u and v are the parameters of the surface.
Let us turn our attention to a robot hand equipped with four

fingers. Each finger has three degrees of freedom. The relation
between a finger and the object is illustrated in Figure 2. The
frame Kp denotes the palm frame and it is the inertial frame in
the manipulation system. The object frame Ko is fixed to the
object. Without loss of generality, we assume that the origin
of the object frame Ko coincides with the origin of the palm
frame Kp. Let the vector ωo denote the angular velocity of the
object frame relative to the palm frame, as seen from the palm
frame. Similarly, let vo denote the linear velocity of the object
frame relative to the palm frame, as seen from the palm frame.
The frames Kfi , i = 1, . . . , 4, are attached to the fingertips.
Let the homogeneous transformation between the palm frame
and the base frames of the finger be given by

Tp0f 1 =




−1 0 0 1

0 −1 0 1

0 0 1 0

0 0 0 1


 Tp0f 2 =




0 −1 0 1

1 0 0 −1

0 0 1 0

0 0 0 1




Tp0f 3 =




0 1 0 −1

−1 0 0 1

0 0 1 0

0 0 0 1


 Tp0f 4 =




1 0 0 −1

0 1 0 −1

0 0 1 0

0 0 0 1


 .

In this case, the fingers divide the workspace into quad-
rants. This kind of arrangement is beneficial because the four
fingers work in different quadrants of the workspace. The ini-
tial contact points are determined by the intersection of the
object and the lines x = ±y in the plane z = 0, as shown in
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Fig. 2. The connection between a finger and the object.

Figure 1 (Figure 3). Considering local manipulation planning
where the object and fingertip motion are sufficiently small,
the quadrants ensure separated workspaces avoiding collision
of the fingertips. In the case of global manipulation planning,
the collision avoidance problem requires additional strategies.
They will be discussed in Sections 5 and 6 in more detail. Their
philosophy consists of inserting extra finger relocation back
onto the lines x = ±y in the plane z = 0 if the fingertip
is about to leave its own workspace (stratified manipulation)
or one may carry out this finger relocation after a particular
manipulation phase (see semi-stratified manipulation).

We suppose piecewise constant contact points or, more ex-
actly, the contact model does not allow the fingertip to slide or
roll on the object but one can carry out a fingertip relocation.
In other words, during object motion, the fingertips in contact
with the object keep their positions relative to the object frame
Ko. Contact points with the above properties can be realized
by the contact point with friction model (Salisbury and Mason
1985). Using this assumption, one describes the kinematics in
the palm frame. Since the methods in this paper concern the
kinematic problem, let Jpfi denote the Jacobian matrix of the
ith finger. The fingertip velocity of the ith finger is described
by a reduced Jacobian matrix containing only those rows from
Jpfi which are related to the linear velocities. For the ith fin-
ger, the reduced Jacobian matrix that establishes a connection
between the joint variables and the fingertip velocity (the lin-
ear velocity of the origin of Kf ) in the palm frame Kp is given
by

vpfi = J v

pfi
˙̄qi (2)

where J v
pfi

has 3 rows and 3 columns. For example, a robotic

f2
I f4

I

x

y

x

y

x

y
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I
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p
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Fig. 3. The quadrants of the workspace.

hand equipped with the above homogeneous transformations
claims that the Jacobian matrix of the first finger is given by

J v

pf1
(1, 1) = sin(q̄1(1))(sin(q̄1(2)− q̄1(3))

+ sin(q̄1(2)))

J v

pf1
(1, 2) = − cos(q̄1(1)) cos(q̄1(2)

− q̄1(3)) (1+ cos(q̄1(3)))

+ cos(q̄1(1)) sin(q̄1(2)− q̄1(3)) sin(q̄1(3))

J v

pf1
(1, 3) = − cos(q̄1(1)) cos(q̄1(2)− q̄1(3))

J v

pf1
(2, 1) = − cos(q̄1(1))(sin(q̄1(2)− q̄1(3))

+ sin(q̄1(2)))

J v

pf1
(2, 2) = − sin(q̄1(1)) cos(q̄1(2)

− q̄1(3)) (1+ cos(q̄1(3)))

+ sin(q̄1(1)) sin(q̄1(2)− q̄1(3)) sin(q̄1(3))

J v

pf1
(2, 3) = − sin(q̄1(1)) cos(q̄1(2)− q̄1(3))

J v

pf1
(3, 1) = 0

J v

pf1
(3, 2) = − sin(q̄1(2)− q̄1(3)) (1+ cos(q̄1(3)))

− cos(q̄1(2)− q̄1(3)) sin(q̄1(3))

J v

pf1
(3, 3) = − sin(q̄1(2)− q̄1(3)), (3)

where q̄1(j) is the j th joint variable of the first finger. Taking
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into account all the contact points we get the form

vpf =



vpf1

...

vpf4


 =




J v
pf1

. . .

J v
pf4




︸ ︷︷ ︸
J v
pf



˙̄q1
...
˙̄q4




= J v

pf
q̇. (4)

The discussion of singularities is not a subject of this paper,
hence one may insert the methods below into a global ma-
nipulation planning where singularities, collision avoidance,
and force closure are investigated in a higher level (Vass et al.
1999). On the other hand, if vo denotes the linear velocity and
ωo denotes the angular velocity of the object frame relative to
the palm frame (as seen in the palm frame), then the fingertip
velocities can be determined in an alternative way, namely,

(
vpfi

ωpfi

)
=

[
I [−ppfi×]
0 I

] (
vo

ωo

)
. (5)

Introducing the notation

Jpoi (ppfi ) =
[

I [−ppfi×]
0 I

]
(6)

and assuming that all the fingers are in contact, one extends
the eq. (5) to all linear and angular velocities as




vpf1

ωpf1

...

vpf4

ωpf4


 =




Jpo1(ppf1)
...

Jpo4(ppf4)




︸ ︷︷ ︸
Jpo(ppf )

(
vo

ωo

)
, (7)

where ppf = (pT
pf1

, . . . , pT
pf4

)T . For clarity, we write
Jpo1(ppfi ) as Jpo1 and Jpo(ppf ) as Jpo, respectively. To ex-
press the fingertip velocities, one should eliminate the rows
belonging to angular velocities ωpfi from Jpoi , i = 1, . . . , 4,
in eq. (7). It implies a reduced matrix J v

po
instead of Jpo re-

sulting fingertip velocities expressed in the palm frame as




vpf1

...

vpf4


 =




I [−ppf1×]
...

I [−ppf4×]




︸ ︷︷ ︸
J v
po

(
vo

ωo

)
. (8)

From eqs. (4) and (8) we can write


vpf1

...

vpf4


 =




I [−ppf1×]
...

I [−ppf4×]




︸ ︷︷ ︸
J v
po

(
vo

ωo

)

=



J v
pf1

. . .

J v
pf4




︸ ︷︷ ︸
J v
pf



˙̄q1
...
˙̄q4


 . (9)

From here, the relation between joint variables and object
motion can be obtained as:


˙̄q1
...
˙̄q4


 = (

J v

pf

)−1
J v

po

(
vo

ωo

)
. (10)

Equation (10) is used below (Sections 4 and 5).

3. Stratified MP

Smooth MPA (see the Appendix) does not work on a nonlinear
system having discontinuously changing equations of motion.
However, stratified MP (Goodwine 1998) extends the results
of smooth MPA and overcomes the difficulty. In this section,
a brief outline of the method is given.

DEFINITION 1. A set ℵ ⊂ R
n defined by union of smooth

manifolds (i.e., strata) is said to be a regularly stratified set.

DEFINITION 2. The system is stratified if its configuration
space is defined by regularly stratified sets.

In the strata, the system is represented by different, smooth
nonlinear systems. The main problem is to develop an MPA
that combines the different systems from different strata into
a unified approach.

Let S0 ≡ M be the whole configuration space where
there is no constraint. Let the stratum Si ⊂ S0, i > 0, be
a codimension one submanifold where the system is sub-
jected to a kinematic constraint. Roughly speaking, this stra-
tum corresponds to dimension n − 1 manifold in the config-
uration space. Let Sij = Si ∩ Sj , where system is subjected
to the two constraints presented on Si and Sj . In general, a
stratum where a few constraints may appear is denoted by
SI = Si1i2 ...ik = Si1 ∩ Si2 ∩ · · · Sik where I = i1i2 . . . ik is a
multi-index (Isidori 1996).

DEFINITION 3. The stratum with lowest dimension is said to
be the bottom stratum.

DEFINITION 4. A stratum is called the lower stratum if its
dimension is lower than the dimension of the other one. The
higher stratum is defined vice versa.



6 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May-June 2002

EXAMPLE 1. (Strata dimensions.) Take a smooth object ma-
nipulation system equipped with 4 fingers where each fin-
ger has 3 degrees of freedom. Suppose that all the contact
points are fixed to the object, i.e., there is neither sliding nor
rolling. Denote the linear and angular velocity vectors by vo

and ωo, respectively. Furthermore, let vfi denote the ith fin-
gertip velocity. One can easily see that the tangent space of
the whole configuration space S0 is spanned by the vector
vo ⊕ ωo ⊕ vf1 ⊕ · · · ⊕ vf4 having dimension 18.

Suppose all the fingers 1, . . . , 4 are in contact with the
object (i.e., they are glued to the object) so the system is sub-
jected to 4×3 velocity constraints (4 vector constraints). One
can easily check that the degrees of the freedom of the system
are provided by the orientation and the position of the object.
It defines a system that moves on the stratum S1234 having
dimension 6. The stratum S1234 is the bottom stratum (with
the most constraints and the lower dimension). The tangent
space is spanned by vo ⊕ ωo and the equation of motion can
be described as

S1234 : ẋ =
(

vo

ωo

)
(11)

= f1(x)u
S1234
1 + . . .+ f6(x)u

S1234
6 = F1234(x)u.

Note that one can choose only 6 independent inputs because
the desired object motion demands all the fingertips to move
together with the object. These fingertips provide six degrees
of freedom in accordance to the tangent vector vo ⊕ ωo.

Now, assume that the finger 1 breaks off contact with the
object and moves freely in the workspace. Meanwhile, the
other three fingers keep contact with the object. The new sit-
uation leads to a new stratum S234 with equation of motion

S234 : ẋ =

 vo

ωo

vf1


 (12)

= f1(x)u
S234
1 + . . . +f9(x)u

S234
9 = F234(x)u.

Note that we have 9 inputs because the desired object motion
demands that fingertips 2, 3 and 4 move together with the ob-
ject. These fingertips provide six degrees of freedom. Finger
1 can move in the free space, rendering three additional de-
grees of freedom. The scenario is similar when another finger
breaks off the contact instead of finger 1.

To study stratified MP, one can define a more general notion
of the controllability and find conditions when the stratified
system is controllable in this general sense.

DEFINITION 5. Take a system with state vector x and input
vector u. Consider an open set V ⊆ M . Let RV (x0, T ) be the
set of states which can be reached up to time T , i.e., the set
of states x such that there exists a control u(t), 0 ≤ t ≤ T

that steers the system from x(0) = xI to x(T ) = xF while
x(t) ∈ V for 0 ≤ t ≤ T .

DEFINITION 6. Let

RV (x0,≤ T ) =
⋃

0≤τ≤T
RV (x0, τ ) (13)

be the set of all states reachable from x0 up to time T .

DEFINITION 7. Consider a system with a stratified configu-
ration manifold and a collection of strata,

{SI1 , SI2 , . . . , SIm}.
The system is small time locally stratified controllable if
RV (x0,≤ T ) contains a neighborhood of x0 in {SI1 ∪ SI2 ∪
· · · ∪ SIm} and T > 0.

An important result from Goodwine (1998) gives a suffi-
cient condition for the stratified controllability, as stated in
the next theorem.

THEOREM 1. (Goodwine) Let Tx0M be the tangent space of
M at x0 and let �̄Sj |x0 denote the involutive closures of a
distribution spanned by the vector fields of a stratum Sj in
x0. If there exists a nested sequence of strata x0 ∈ Sp ⊂
Sp−1 ⊂ · · · ⊂ S1 ⊂ S0, such that the involutive closures of
distributions (of strata) fulfill

∑p

j=0 �̄Sj |x0= Tx0M , then the
system is locally stratified controllable from x0.

The control methods presented for smooth systems show
a major challenge in the general MPP because different strata
are described by different equations of motion. The systems
defined on the separated strata are typically not controllable.
The idea of stratified control is to define a common state space
where all the vector fields can be considered from all the strata.
This usually is associated with the bottom stratum because the
typical initial and final configurations lie in this stratum. The
following example assists in demonstrating the essential point
of this approach.

EXAMPLE 2. (Stratified control concept.) Consider a finger
gaiting system with two fingers whose configuration space is
sketched by Figure 4. Using the convention of the notation
for strata, S0 symbolizes the total configuration space, and
S1 stands for the stratum where finger 1 is in contact with
the object. Similarly, S2 represents the stratum where finger
2 contacts the object. The most important stratum is the bot-
tom stratum S12 where both fingers touch the object. Let the
initial and the desired final points lie in the bottom stratum
(in accordance with a typical manipulation problem). If one
uses the fixed contact points model then the system will not
be controllable in the bottom stratum S12. In other words, one
cannot solve a general manipulation task on S12 since every
fingertip must be fixed to the surface in this stratum. However,
the whole system can be stratified controllable and manipu-
latable if one puts into use the vector fields from the higher
strata allowing the system to move along an extra direction (in
higher stratum) as is illustrated in Figure 4. This results in the
physical epiphenomenon of finger gaiting. The manipulation
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Fig. 4. Flow sequences in the stratified configuration space.

process is composed of a sequence of flows where vector field
g1,1 moves the system off from S12 onto S1 (finger 2 discon-
nects the object), vector field g2,1 moves the system off from
S12 onto S2 (finger 1 disconnects the object), g1,2 is defined on
stratum S1, and g2,2 is defined on stratum S2.

DEFINITION 8. A vector field is said to be a moving off vector
field if the existence of a contact between the finger and the
object depends on it. In other words, a moving off vector field
switches between strata.

DEFINITION 9. A vector field is said to be a moving on vector
field at a given configuration x0 if it does not leave the stratum
where x0 is defined.

PROPOSITION 1. (Goodwine) If the moving on vector fields
commute with moving off vector fields (i.e., by definition,
their Lie brackets are zero) then the flow sequence composed
of them can be rearranged. The new order makes a simplifi-
cation possible by eliminating some flows from the sequence.

COROLLARY 1. Switching between higher and lower strata
is possible if the vector fields which lift off/on a finger from/to
the object are decoupled from all vector fields defined on the
substratum and higher strata (in other words, their Lie brackets
are zero).

The benefit of the above statements is highlighted in the
following example.

EXAMPLE 3. (Flow rearrangement) To illustrate the propo-
sition, consider the stratified system of Example 2. The g1,2 is
a moving on vector field in S1, g2,2 is a moving on vector field
in S2. The g1,1 and g2,2 are the moving off vector fields of the
system (they switch between the bottom stratum S12 and the
higher strata S1 or S2). Let xI and xF be in the bottom stratum.

Then the flow sequence

xF = #t6
g2,1︸︷︷︸

S12←S2

◦#t5
g2,1︸︷︷︸

on S2

◦ #t4
g2,1︸︷︷︸

S2←S12

◦#t3
−g1,1︸ ︷︷ ︸

S12←S1

◦ #t2
g1,2︸︷︷︸

on S1

◦ #t1
g1,1︸︷︷︸

S1←S12

(xI ) (14)

can solve the MP problem. If the condition of the proposition
is satisfied, the moving on vector fields commute with the
moving off vector fields, i.e.,

[g1,1, g1,2] = 0 and [g2,1, g2,2] = 0.

This means that g1,1 and g1,2 can be interchanged and so do
g2,1 and g2,2. Then, this modifies the flow sequence (14) to

xF = #t5
g2,1
◦#t6

g2,1
◦#t4

g2,1
◦#t2

g1,2
◦#t3

−g1,1
◦#t1

g1,1
(xI ). (15)

Assuming that t1 = t3 and t4 = t6, the sequence is simplified
to

xF = #t5
g2,1
◦#t2

g1,2︸ ︷︷ ︸
on S12

(xI ), (16)

where g1,2 is defined on S1 and g2,2 is defined on S2. However,
one may evaluate them on the bottom stratum and then the
flow sequence (16) will lead to the same result. In fact, if
the g1,2 and g2,2 are in the tangent space of S12 then the flow
sequence will remain in the bottom stratum.

COROLLARY 2. If the condition in Corollary 1 is satisfied,
i.e., flow rearrangement is possible, then one can create a
fictitious smooth system (defined later as the bottom stratified
system) as a compound system of subsystems from different
strata. This system is the starting point of stratified MPA.

Corollary 2 establishes a sort of connection between strat-
ified and smooth controllability, based on Proposition 1. Ex-
ploiting the idea of flow rearrangement with the simplification
shown in Example 3, the stratified motion planning algorithm
is summarized as follows.

ALGORITHM 1. [Stratified Motion Planning (Goodwine
1998)]

Step 1. Determine the multiple stratified system. The equa-
tions of motion in the strata are

S0 : ẋ = g0,1u
0,1 + · · · + g0,n0u

0,n0

S1 : ẋ = g1,1u
1,1 + · · · + g1,n1u

1,n1

...

SI : ẋ = gI,1u
I,1 + · · · + gI,nI u

I,nI .

Step 2. Create the bottom stratified system. It is clear from
Theorem 1 and Proposition 1 that the stratified motion
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planning algorithm requires a special system on the bot-
tom stratum (as a common space). Note, this system is
also a fictitious system but without any connection to
another fictitious system discussed by smooth motion
planning (see the Appendix). In order to obtain this spe-
cial (i.e., bottom stratified) system, one has to create a
union set of vector fields in all strata and define with
them a system

ẋ = g0,1u
0,1 + · · · + g0,n0u

0,n0

+ g1,1 |Sb u1,1 + · · · + g1,n1 |Sb u1,n1

...

+ gI,1 |Sb uI,1 + · · · + gI,nI |Sb uI,nI , (17)

where the notation |Sb refers to vector fields taking part
in the bottom stratified system, however, they are de-
fined originally not in this stratum. It should consist
of all the moving on vector fields that commute with
the moving off vector fields (i.e., the vector fields that
disconnect a finger from the object). Note that a vector
field is Sb means that one “cuts” some dimensions from
the original vector field.

Step 3. Create the bottom stratified extended system

ẋ = g0,1u
0,1 + · · · + g0,n0u

0,n0

+ g1,1 |Sb u1,1 + · · · + g1,n1 |Sb u1,n1

...

+ gI,1 |Sb uI,1 + · · · + gI,nI |Sb uI,nI

+ Lie brackets (18)

including the vector fields of bottom stratified system
and the Lie brackets among them. This system is the
extension of bottom stratified system according to the
way mentioned by smooth MPA in the Appendix.

Step 4. Solve the smooth MP on the bottom stratified ex-
tended system. The algorithm of the smooth MP on the
bottom stratified extended system also solves indirectly
(indirectly because it operates only with moving on vec-
tor fields) the stratified MPP. The result is a sequence
of flows along the moving on vector fields specified by
the following three sequences:

a. Sequence of moving on vector fields. A flow in
the sequence is defined along the corresponding
vector field in this sequence of moving on vector
fields.

b. Sequence of time. The element of sequence de-
fines how much time is needed to move along a
vector field.

c. Sequence of inputs. Actually, the smooth motion
planning algorithm (see the Appendix) sets the

absolute value of the inputs to 1. However, we
need to define a sequence that defines the sign of
the inputs.

Step 5. Complete the solution for the stratified MPP. If two
neighboring flows in the sequence are defined in dif-
ferent strata, one has to insert moving off vector fields
between them in order to switch between their strata.
The extra flows along the moving off vector fields have
to assure that the set of satisfying constraints changes
in accordance with the change of strata. It is possible
on the base of Proposition 1 and Corollary 1.

4. The Description of the Manipulation Problem
as a Stratified System

In this section, we intend to show that the manipulation system
of Section 2 may be considered as a stratified system. Another
goal is to describe the manipulation task in terms of stratifica-
tion. Our intention is to provide more exact equations for strata
that reflect the stratification. To study the problem in such a
way, one should define the subsystems in the strata. Example 2
showed that the idea of finger gaiting fits the stratification dis-
cussion well. Following this idea, strata can be defined with
different subsystems where each subsystem is subjected to a
set of constraints depending on the fingers being in contact
with the object. For the sake of simpler formulation, we adopt
a treatment in the palm frame.

If all the fingers are in fixed contact with the object while
the object is moving, the subsystem

%f,S1234 :




vo

ωo

ṗpf1

...

ṗpf4


 =




I 0
0 I

I [−ppf1×]
...

...

I [−ppf4×]




(
vd
o

ωd
o

)

(19)

realizes a possible manipulation phase. Here, ppf1 , . . . , ppf4

represent the fingertip positions. Indeed, %f,S1234 defines the
system in the bottom stratum S1234. The vd

o
and ωd

o
realize the

desired linear and angular velocities of the object, however,
they are also the (fictitious) inputs of %f,S1234 . The physical
inputs of the kinematic model are the derivatives of the joint
variables q̄i . The transformation (10) makes a conversion be-
tween the fictitious and real inputs:



˙̄q1
...
˙̄q4


 = (

J v

pf

)−1
J v

po

(
vd
o

ωd
o

)
. (20)

The use of fictitious inputs has the benefit that it leaves (19) in
the form ẋ = F(x)u instead of the more general ẋ = F(x, u).
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Recall that stratified MP in Section 3 was developed for a
kinematic system given in the form ẋ = F(x)u.

Consider now a subsystem in a higher stratum. For in-
stance, if all the fingers except finger 1 are in contact with the
object, it assigns a stratum S234. The equations of motion on
this stratum yields %f,S234 :



vo

ωo

ṗpf1

...

ṗpf4


 =




I 0 0
0 I 0
0 0 I

I [−ppf2×] 0
I [−ppf3×] 0
I [−ppf4×] 0





 vd

o

ωd
o

ṗd
pf1


 ,

(21)

where ṗd
pf 1

is the desired (unconstrained) fingertip velocity of
the first finger. One may derive the connection between the
fictitious input ((vd

o
)T , (ωd

o
)T , (ṗd

pf 1)
T )T and joint variables

similarly to (20). The only difference is that the first finger is
not subjected to a constraint now, hence


˙̄q1˙̄q2
...
˙̄q4


 =

[
0 J v

pf1

−1

J v
pf{234}

−1J v
po{234} 0

] 
 vd

o

ωd
o

ṗd
pf1


 , (22)

where

J v

po{234} =



I [−ppf2×]
...

I [−ppf4×]


 (23)

and

J v

pf{234} =



J v
pf2

. . .

J v
pf4


 . (24)

The equations of motion and the conversions due to other
higher strata have similar forms, i.e., for instance, %f,S134 :


vo

ωo

ṗpf1

...

ṗpf4


 =




I 0 0
0 I 0
I [−ppf1×] 0
0 0 I

I [−ppf3×] 0
I [−ppf4×] 0





 vd

o

ωd
o

ṗd
pf2


 (25)

and so on. The stratified system defined above will be denoted
by%f . Recall now that one may accomplish the stratified MPA
if it satisfies the conditions of Proposition 1 and Corollary 1.
As one of our contributions in this paper, we show that this
condition is not satisfied in %f .

PROPOSITION 1. The system %f does not make possible
switching between any two strata.

Proof. Consider the vector fields of the systems defined by

(19) and (21). Define two groups of the vector fields by the
last 3 vector fields of %f,S1234 and %f,S134

Fon = [f1 f2 f3] =




0
0
I[−ppf1×

]
...[−ppf4×

]




(26)

Goff = [g1 g2 g3] =




0
0
I

0
0
0




(27)

(the size of each block is 3 by 3). By the definition of the
moving on and moving off vector fields, the vector fields
f1, . . . , f3 are moving on vector fields, the vector fields
g1, . . . , g3 are moving off vector fields. One can find mov-
ing on vector fields from Fon to each moving off vector field
from Goff such that the Lie brackets of the two vector fields
are not zero. For example:

[f2, g1] = [f3, g2] = [f1, g3]
= (

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
)T �= 0.

Furthermore, these equations still hold if we define Goff as
the last 3 vector fields of any higher strata. It means that based
on Corollary 1, the stratified MP algorithm cannot switch be-
tween arbitrary two strata in the system %f .

The switching problem arising in %f motivated us to de-
velop a new approach that fits well to stratified manipulation
planning. This method is devised in Section 5. Additional mo-
tivation to elaborate a new technique is that the actual stratum
identification requires us to check the contacts in %f due to
a finger. It needs tedious numerical calculation because the
distances between the object and the fingertips do not appear
directly in the state vector.

5. Fitted Stratified Manipulation Planning

This section concerns one of the two other main contributions
of this paper. A new approach of stratified manipulation is
proposed which is an extension of the above method. More
precisely, our primary goal is to provide a description and a
manipulation technique for the system outlined in Section 2
that permits the use of stratified MP in accordance with Corol-
lary 1.

The idea is that fingertip position is described by a vector
po

pfi
= (ui vi zi)

T , where ui and vi describes the projection of
the fingertip position onto the object along the normal vector
of the surface (Harmati et al. 2001). The ui and vi are given as
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X
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z

Fig. 5. Trajectory by finger relocation and its orthogonal
projection onto the object.

the explicit parameters of the object surface. The zi denotes
the distance between the ith fingertip and the object (Figure 5).
The superscript “o” refers to the object frame whose coordi-
nates are defined by explicit parameters of the object. This
description clearly defines moving on and moving off vector
fields in the equations of motion. Such a description fits well
to the stratified MP, hence we solve the MPP using these repre-
sentations. However, this representation is a fictitious (called
fitted) system in the sense that the real physical parameters
(fingertip positions and joint variables) should be obtained via
transformation. The method below includes a stratified MP on
a fictitious system and transformations between the fictitious
and the real physical systems.

Using the convention in notation above, the stratified ma-
nipulation system in Section 2 implies the following equation
of motions on the fitted system.

In the bottom stratum, all the fingers are in contact with
the object, i.e., the degrees of freedom come only from the
object motion:

%fitted,S1234 :
(

vo

ωo

)
= I6

(
vd
o

ωd
o

)
(28)

v̇i = u̇i = zi = 0, i = 1, . . . , 4,

where I6 is the identity matrix with dimension 6. Similarly
to (19), the vd

o
and ωd

o
realize the desired linear and angu-

lar velocities of the object and they are also the (fictitious)
inputs of %f,S1234. Recall that the fingertips are given in the
object frame now with different coordinates, hence the trans-
formation (10) between the fictitious and physical input (joint
variables) should be modified. Let

ppfi = object2palm(Egg(u, v), po

pfi
) (29)

be the function that transforms the object coordinates po
pfi

to the palm coordinates ppfi if the object is of egg shape.

Then, the physical inputs represented by the joint variables
are obtained by 


˙̄q1
...
˙̄q4


 = (30)

(
J v

pf

)−1
J v

po
(object2palm(Egg(u, v), po

pfi
))

(
vd
o

ωd
o

)
,

where po
pf
= ((po

pf1
)T , . . . , (po

pf4
)T )T . As can be seen, the

above equation emphasizes that J v
po

depends on po
pf

and not
on ppf as in (6).

Let us turn our attention now to higher strata Sj1j2j3 where
the multi-index j1j2j3 denotes fingers having contact with the
object. The equations of motion on a higher stratum are given
by
%fitted,Sj1j2j3

:



vo

ωo

u̇i

v̇i

żi


 =

[
I6 0
0 I3

]



vd
o

ωd
o

u̇d
i

v̇d
i

żd
i


 (31)

v̇jk = u̇jk = zjk = 0, j1j2j3 ∈ I4, jk �= i, k = 1, . . . , 3 for
any i = 1, . . . , 4.
The transformation between the inputs of (31) and the joint
variables is similar to (22). For instance, it leads on S234 to the
transformation:


˙̄q1˙̄q2
...
˙̄q4


 =

[
0 J v

pf1

−1

J v
pf{234}

−1J v
po{234} 0

] 
 vd

o

ωd
o

ṗ
o,d

pf 1


 (32)

where ṗ
o,d

pf 1 is the desired velocity of the first finger-
tip described by (u̇1, v̇1, ż1)

T . Note, that J v
po{234}(ppf234) =

J v
po{234}(object2palm(Egg(u, v), po

pf234
)) in accordance with

(29).
Again, the superscript d in inputs refers implicitly to the

fact that the derivatives of the state can be influenced directly
by the desired values of the velocities as the inputs of the
fictitious system %fitted . The ui , vi in (31) determine the pro-
jection of the unconstrained fingertip motion on the object
surface. The next proposition highlights the main benefit of
our approach.

PROPOSITION 2. The fitted stratified model %fitted makes the
switching between two strata possible.

Proof. In order to justify the statement, we show that all the
Lie brackets between a moving on and a moving off vector
field are zero, i.e., they commute. At first, we show that the
vector fields related to the variables zd

i
(e.g., last column in the

matrix in (31)) are moving off vector fields and all the other
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vector fields are moving on vector fields. For this, one can see
that the inputs zd

i
act only on the state variables zi . However,

the actual equations of motion (and the actual stratum) depend
on the (not necessary only one) i for which zi = 0. In other
words, zd

i
determines the current stratum and at the same time,

does not influence the state vector in the bottom stratum. In
accordance with the definition of the moving off vector fields
(see Definition 8), the vector fields related to the inputs zd

i
are

moving off vector fields.
Furthermore, let ei denote the unit vector

ei = (0, . . . , 0, 1︸︷︷︸
ith pos.

, 0, . . . 0)T ∈ R
18. (33)

Each vector field of system %fitted in the whole configuration
space is equal to ei . It is an elementary result from the dif-
ferential geometry that the Lie brackets [ei, ej ] = 0. It holds
for arbitrary two vector fields and it holds also for the Lie
brackets defined between any moving on and any moving off
vector fields. Based on Corollary 1, one can switch between
two arbitrary strata in the system %fitted .

COROLLARY 3. The stratified control algorithm can be ap-
plied to %fitted by creating the bottom stratified (extended)
system.

Let us see now how the fitted stratified manipulation plan-
ning works on %fitted . The final goal in our manipulation plan-
ning is to obtain the joint variables of the fingers that steers
the object into a desired position and orientation. At the final
stage, the fingertips should reach desired contact points on the
surface, as well. The stratified manipulation planning involves
a stratified MPP in the configuration space. The equation of
strata are given by (28) and (31). These subsystems define a
bottom stratified fitted system that satisfies Corollary 1 and
forms




vo

ωo

u̇1

v̇1

...

u̇4

v̇4



=




I6 0 0 0 0
0 I2 0 0 0
0 0 I2 0 0
0 0 0 I2 0
0 0 0 0 I2







vd
o

ωd
o

u̇d
1

v̇d
1

...

u̇d
4

v̇d
4




. (34)

It is known from Section 3 that this bottom stratified (fitted)
system is the foundation of the stratified MP used in our ma-
nipulation planning. In fact, the stratified motion planning on
%fitted can be reduced to a smooth MP (see the Appendix)
on the bottom stratified fitted system (34). The vector fields
of (34) are the moving on vector fields of %fitted . Since the
system is stratified, it is required to insert moving off vector
fields where two flows of moving on vector fields from dif-
ferent strata meet at a point on the resulted trajectory. Smooth
MP on (34) makes sense since the desired object position,

orientations and fingertip positions are available. The only re-
maining problem is that the inputs of %fitted are fictitious and
not real. It means that one can accomplish the trajectory of
stratified motion planning only if the fictitious inputs can be
replaced with the joint variables. As has been mentioned, this
is possible by using the transformations (30), (32) and so on.

The main steps of the method are illustrated in Figure 6
and are summarized as follows.

ALGORITHM 2. [Fitted stratified manipulation]

Step 1. Planning the motion for the object and the fingertips.
The reference fingertips needs to be available in the
object frame.

Step 2. Create the fitted system %fitted (see (28) and(31)).

Step 3. Create the bottom stratified fitted system (34).

Step 4. Stratified motion planning (Algorithm 1) on fitted
system. If the time schedule is important, one may use
the considerations in Harmati et al. (2000a,b).

Step 5. Performing the finger relocations according to the
insertion of moving off vector fields in Step 4.

Step 6. Transform the motion trajectory from the state space
of the fitted system into the state space of the real sys-
tem. One may use the geometric and kinematic trans-
formations such as (30), (32). As a result, we obtain
the joint variables (and their derivatives) for the desired
manipulation.

Observe now some features generated by this approach.
The main complication appeared in earlier stratified MPA
(Goodwine 1999) when the Hall coordinates (see the Ap-
pendix) are computed. It proceeds via evaluation of recursive
integrations. If the vector fields of the bottom stratified sys-
tem have symbolically complex vector fields, the integrand
becomes complicated. However, this is not the case for the
fitted stratified system because the vector fields do not con-
tain symbolic variables. It makes the computations very easy,
almost entirely numerical.

As a consequence of simple vector fields, one can easily
show the property of (stratified) controllability on the pro-
posed fitted system with considerably fewer computation than
in the earlier stratified approaches since all kind of compu-
tation with the constant vector fields are elementary in the
differential geometry.

An additional advantage of the method in comparison with
Goodwine (1999) is that one may directly interpret the result-
ing trajectory of the system since the fictitious inputs in (28),
(31) etc. are strongly related to the object parameters. One
can also see that the creation of an extended bottom stratified
fitted system is unnecessary because the vector fields of the
bottom stratified fitted system span the entire tangent space in
a given configuration. In our example, the dimension of the
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system transformation system

fitted obtain

strata

system on the stratum2

system on the stratum3

system on the stratum4

trajectory

system on the stratum1
Bottom 

stratified

system

inserting

moving off

vector fields

Smooth MP

extended system
Bottom stratified

Stratified MP

from the fitted system

to the original system

 solution transformation 

Fig. 6. The main steps of fitted stratified manipulation planning.

system (34) equals 3 + 3 + 4 × 2 = 14. Both the linear and
angular velocity of the object take 3 coordinates. Addition-
ally, every fingertip is described by 3 parameters, of which 2
determine the projection of the fingertip onto the object sur-
face expressed by the exact parameters of the object. The third
parameter does not take place in the bottom stratified fitted
system but it is fixed to the moving off vector fields that lift
the finger on and off the surface. Observe that every input in
(34) affects only one state variable, i.e., the bottom stratified
system is decoupled. It implies that the configuration space
can be divided into subspaces where the strata assign disjoint
subspaces (see the vector fields of (34). It poses the possibility
of a stratified manipulation/motion planning where the trajec-
tory may evolve locally on a submanifold whose dimension is
greater than one. This means that the projection of fingertips
may follow a special trajectory on the object surface. (Recall
that the actual stratified MP relies on a smooth MP where the
system trajectory evolves along sequence of flows, i.e., it is
locally restricted to one dimensional submanifolds. It means
that arbitrary fingertip trajectory cannot be prescribed, only a
final state can be reached.) We intend to study this possibility
in future work.

The technique introduced also possesses a main drawback.
Namely, we need to execute extra transformations between
the fictitious and real inputs. It needs to evaluate nonlinear
transformations like (30) and (32) at each configuration. This
means that the joint variables are not obtained directly but are
derived.

Additionally, the method expects some reference data (fin-
gertip positions) not in the palm frame but in the object (body)
frame.

One more restriction appears when stratified manipula-
tion is employed. Namely, the workspace was divided into
four quadrants and it is assumed that all the fingers work
in their own quadrant assuring collision avoidance. Unfortu-
nately, stratified manipulation does not necessarily keep the

fingers directly in their own workspace for arbitrary manipu-
lation. If the reference fingertips are prescribed in their own
workspaces, fitted stratified manipulation implies a dextrous
manipulation. It can be done by choosing a desired final point
close enough to the initial configuration. However, the most
important requirement is that the object should reach the de-
sired position and orientation, hence the fingertip positions
play a relatively secondary role. In this special case, the prob-
lem should be overcome in the phase when the reference tra-
jectory is generated. More exactly, if it turns out that a finger
is about to leave its permitted workspace (quadrant) during
the desired object motion, then one should insert an artifically
generated finger relocation that pulls back the finger into its
region, for example onto the lines x = ±y in the plane z = 0.
Of course, it means that the reference fingertip positions must
be modified. The semi-stratified manipulation planning in the
next section is devoted to handling this problem.

6. Fitted Semi-Stratified Manipulation

In this section, we propose a decomposed manipulation con-
cept for an object with smooth surfaces that combines fitted
stratified motion planning with unconstrained motion plan-
ning. In this context, unconstrained motion means that a finger
can move in the free space between two points independently
of the object. The motivation to use unconstrained MP beside
stratified manipulation may be useful for more reasons. One
of them is to give a greater degree of freedom for finger relo-
cations in manipulation planning. Second, it may be desired
to dispose of one part of the complex computations appear-
ing for instance in computation of Hall basis. Additionally,
we would like to keep the fingers in their own workspaces
independent of the object orientation.

If one considers the fitted stratified manipulation in Sec-
tion 5, then a final configuration can be obtained as a sequence
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of 14 connected flows,

xF = #(vo,d

pf4
(2), t1) ◦#(vo,d

pf4
(1), t1) ◦ · · ·

◦ #(vo,d

pf1
(2), t1) ◦#(vo,d

pf1
(1), t1)

◦ #(ωo,d

o
(3), t1) ◦ · · · ◦#(ωo,d

o
(1), t1) (35)

◦ #(vo,d

o
(3), t1) ◦ · · · ◦#(vo,d

o
(1), t1)(xI ),

where the first argument of flow # denotes the active input,
and the second one defines the length of its active time interval.
In addition, vo,d

pf 1 ≡ ṗ
o,d

pf 1, v
o,d

pf 1(1) = u̇d
1 , vo,d

pf 1(2) = v̇d
1 and so

on. The first 6 flows (i.e., the last 6 in writing order) manipulate
the object and every 3 flows following it belong to fingers.
Note that active input uniquely assigns a moving on vector
field from %fitted . If two neighboring flows are defined in
different strata, then insertion of the appropriate moving off
vector field is required. It is done by activating inputs v

o,d

pf i(3).
It may occur already in the object manipulation part realized
by flows #(ωo,d

o
(3), t1), . . . , #(vo,d

o
(1), t1) that the fingertip

positions exceed their allocated workspace.
To avoid this phenomenon, we pursue semi-stratified ma-

nipulation planning through several steps. The main steps are
outlined in Figure 7.

In order to keep the fingertips in their own quadrants assur-
ing their collision avoidance, the reference fingertip positions
should be chosen in a suitable way. The subsegment genera-
tion algorithm concerns this issue, as follows. It is assumed
that the four initial fingertips on the object surface lie on the
lines x = y and x = −y in the plane z = 0.

Let us follow a manipulation phase now. At first, one fixes
the contact points to the object and moves the object along
the reference object trajectory. Before one of the fingertips is
about to leave its quadrant (workspace), we record the object
and fingertip configurations. This configuration will be the
desired final configuration for the point to point fitted stratified
MP. This configuration is reached by a sequence of flows (35).

At this point, we insert four unconstrained finger reloca-
tions that “pull back” the fingertips into the plane z = 0 where
x = y and x = −y (see Figure 1). The fingers are relocated
in order, i.e., only one of them moves back into the contact
z = 0, x = y or x = −y at a time, the other three remain on
the surface. After this, the following finger is relocated onto
another contact point and the other three ones remain in con-
tact with the object. While the fingertip is being relocated, it
breaks the contact, moves in the free space and establishes a
new contact in the above mentioned location. It can be shown
(Goodwine 1999) that this kind of motion of the fingertips
is able to ensure force closure stability. As a matter of fact,
the unconstrained finger relocations are new features in fitted
semi-stratified MP since it did not appear in fitted stratified
MP. The unconstrained finger relocations allow us to steer
the free fingertip using J v

pfi
. In spite of fitted stratified motion

planning, it is allowed to be more than one active input, so
that the relocated fingertip has 3 degrees of freedom in the

space whereas fitted stratified MP only had one. This means
that one can define strategies which keep the fingers in their
workspaces avoiding the fingertip collisions. Two simple ones
are the following:

• Finger relocation with straight line subsegments. The
trajectory is composed of three straight line subseg-
ments. Determine two points above the object starting
from the initial and the desired final points, in the di-
rection of the normal vector of the surface. This can be
a part of the overall planner. The two points must be
at a distance from the object such that the straight-line
connecting the two points does not intersect the object.
The two points with the initial and final points define
three joined straight-line subsegments.

• Finger relocation with constant distance from the ob-
ject. The difference from the previous approach is in
the trajectory between the two points above the object.
It is a curve evolving in parallel manner to the surface
of the object.

The whole manipulation procedure consists of subsegments
snapping the object in the state where the fingertips does not
leave their workspaces yet. Figures 8–10 illustrate the steps
of the fitted semi-stratified algorithm if the manipulation task
is a rotation around the axis [1 0 1]T . Figure 8 shows the eval-
uation of reference contact points during the object motion. It
means that the points marked by an asterisk belonged to x = y

and x = −y in the plane z = 0 at the times when the finger
relocations were needed. In fact, leaving a workspace is not
the only reason to relocate a finger. It is better to choose rela-
tively small subsegments because the convergence of smooth
MP (see the Appendix) is guaranteed only under a critical dis-
tance between the initial and final configurations. Theoretical
results are not known in general for the critical distance. Some
experimental attempts can be found in Lafferriere and Suss-
mann (1991) and Harmati et al. (2000b). Consider now only
a subsegment. Then, Figure 9 depicts the configuration where
the phase of fitted stratified MP steers the system. After this,
the fingers are relocated back into the plane z = 0 on the lines
x = y and x = −y. They assign four contact points. Finger 1
is relocated first, then finger 2, and so on. One configuration
is snapped and illustrated in Figure 10. When all the fingers
are relocated, the initial point of the new manipulation phase
arrives (marked also by asterisk in Figure 8). The algorithm
is summarized as follows.

ALGORITHM 3. [Fitted semi-stratified MP]

Step 1. Move the object through the desired path.

Step 2. Snap the object from time to time with small enough
time steps so that the fingertips do not leave their
quadrants.
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Stratified
Motion Planning

1st finger
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unconstrained finger relocations

Subsegment
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Fig. 7. The main steps of semi-stratified manipulation planning.
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Fig. 8. The evolution of the planned contact points during the
manipulation (axis z is directed upwards).
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Fig. 9. The phase of fitted stratified manipulation (the object
moves).
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Fig. 10. The relocation of the first fingertip. (The phase of
systematic finger relocation where the object does not move.)

Step 3. Consider two neighboring configurations. The first
state represents the initial state xo,I of the object, the
second one describes the final state xo,F of the object.

Step 4. Intersect the object in its initial state xo,I with the lines
x ± y in the plane z = 0. Let the four contact points
be denoted by Ci,initial , i = 1, . . . , 4 (expressed in the
object frame). The initial state: xI = xo,I ⊕ C1,initial ⊕
· · · ⊕ C4,initial .

Step 5. Define xF = xo,F ⊕ C1,inter ⊕ · · · ⊕ C4,inter as the
final state of the object manipulation phase. The in-
termediate hand configuration Ci,inter , i = 1, . . . , 4 is
prescribed by the manipulation task but in the simplest
case (that is followed also in our treatment), one can
choose Ci,inter = Ci,initial , i = 1, . . . , 4 where the po-
sitions of the fingertips do not change relative to the
object under the phase of object manipulation.

Step 6. Fitted stratified MP from xI into xF . If one chose
Ci,inter = Ci,initial , then this phase is reduced only to an
object manipulation and the fingertips do not change
position on the object. (The phase of grasp adjustment
is realized in the following steps.)
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Step 7. Intersect the object in its final state xo,F with the lines
x ± y in the plane z = 0. Let the four contact points be
denoted by Ci,f inal , i = 1, . . . , 4.

Step 8. Relocate the finger 1 from C1,inter into C1,f inal . This
motion planning is carried out in a higher strata (in S234

where the motion of finger 1 is free). The actual hand
configuration:
xf inal1 = [CT

1,f inal
, CT

2,inter . . . C
T
4,inter]T . In this and the

following cases, only the free finger carries out a mo-
tion, the other ones stay in their state.

Step 9. Relocate finger 2 from C2,int into C2,f inal . This mo-
tion planning is carried out in a higher stratum (in S134

where the motion of finger 2 is free). The actual hand
configuration:
xf inal2 = [CT

1,f inal
, CT

2,f inal
. . . CT

4,inter]T .

Step 10. Relocate finger 3 from C3,int into C3,f inal . This mo-
tion planning is carried out in a higher stratum (in S124

where the motion of finger 3 is free). The actual hand
configuration:
xf inal3 = [CT

1,f inal
. . . CT

3,f inal
, CT

4,inter]T .

Step 11. Relocate finger 4 from C4,int into C4,f inal . This mo-
tion planning is carried out in a higher stratum (in S123

where the motion of finger 4 is free). The actual hand
configuration:
xf inal4 = [CT

1,f inal
. . . CT

4,f inal
]T .

Step 12. Repeat the algorithm for the next subsegment.

It is worth concluding that fitted semi-stratified manipu-
lation with its more global considerations (finger relocation
strategy) belongs rather to a slightly higher level in the manip-
ulation than the fitted stratified approach. It comes from the in-
sertion of an extra phase consisting of four unconstrained fin-
ger relocations. These unconstrained finger relocations were
separated from the fitted stratified manipulation. They sub-
stitute systematically one part (namely the finger relocation
part) of the fitted stratified approach. As a result, one may
ensure force closure stability, collision avoidance. However,
one should choose the reference contact points in a restricted
way (finger relocation when fingers are about to leave their
workspaces). It results that the fitted semi-stratified manipu-
lation accomplishes rather an object manipulation than a dex-
trous manipulation.

7. Simulation Results

We have proposed two MP algorithms for the object manip-
ulation problem where the object is of smooth surface. The
simulation results highlight the typical features. Let us con-
sider a manipulation task consisting of object reorientation.
Let the manipulation system be due to Section 2. Let the de-
sired object motion be a rotation around the axis [ 1 1 1 ]T

while the position px , py , pz of the object frame does not
change. Meanwhile, it is desired the final fingertip contacts to
be in the plane z = 0 where the lines x = ±y intersect the
object. It is a point to point MPP to fingers but a trajectory
tracking problem for the object. Since the stratified and semi-
stratified manipulation planning is able to handle only with
point to point MPP, we should reduce the problem. To do so,
we divide the object trajectory into connecting subsegments
where the ends of the subsegments should lie on the reference
trajectory generated by the prescribed rotation around axis
[ 1 1 1 ]T .

Let us turn our attention to the fitted stratified manipulation
at first. As was discussed above, this method is not restricted
in the reference fingertip positions. Theoretically, any finger-
tips can be reached at the end of the manipulation phase but,
because of this, one should check if the fingers do not leave
their allowed workspaces (the quadrants). Hence we assume
that the manipulation task does not require the fingertips to
leave their quadrant while they travel to their desired final
state.

We prescribe now the desired fingertip positions in the fol-
lowing way. The desired final object configuration is deter-
mined in each subsegment from the desired object trajectory
by snapping. At this state, we intersect the object with the
x = ±y lines in the plane z = 0. It points out four fingertip
positions. The object configuration and these 4 points give the
desired final state for the fitted manipulation in this subseg-
ment. Now, we carry out the next part of the desired object
rotation phase. It will determine the desired final object states
and the desired final fingertip position in the next subsegment
and so on. Leading the object along the reference trajectory
hypothetically, one can obtain the initial and final points to the
fitted stratified manipulation in each subsegment. (The initial
state is always the final state of the previous section.) The
reference final fingertips are defined similarly, by means of a
designed trajectory between initial and final state. The simu-
lation results are illustrated in Figures 11–17. Introducing the
notation ωo = [φ̇x φ̇y φ̇z]T for the components of the angular
velocity of the object, Figure 11 simulates the evolution of the
orientation of the object during the manipulation.

In accordance with the philosophy of stratified control,
only one fictitious input is active at a given time instant as
seen in Figure 11. As a consequence, the object and fingers
move along one vector field at any time. Since the fitted system
is very simple, the nature of the motion is easily interpretable.
More exactly, the object motion consists of a sequence of the
rotation around the axis x, y and z which are performed after
each other. The initial and final stages of this part of process
are illustrated in Figures 13 and 14. As known from the dis-
cussion, one has to obtain the real input via transformations
(30) and (32). The real inputs are the joint variables depicted
due to finger 1 in Figure 12. Although only one fictitious in-
put is active at a given time, it is not necessarily true for real
inputs (i.e., for joint variables). One fictitious input is derived



16 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May-June 2002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

st
at

es
 (

ob
je

ct
 a

nd
 1

st
 fi

ng
er

)

φ
x
 

φ
y
 

φ
z
 

u
1
 

v
1

 

p
x
, p

y
, p

z
=0 

Fig. 11. The states related to the object orientation and the
first fingertip position.

namely from more than one real input via a transformation.
Comparing Figures 11 and 12, one observes that the most dy-
namic parts in the joint variables belong to finger relocation.
The reason is that moving off vector fields are inserted at this
time interval disturbing the smoothness of the characteristics
and performing finger relocations. The finger relocations are
carried out along distinct directions above the object. In the
beginning, the finger arises from the object in the direction
of the normal vector of the surface. Maintaining distance, the
fingertip moves above the object. This motion consists of a
motion along the explicit parameters of the object. It is very
important that the finger moves along only one parameter at
a given time instant. Furthermore, one can also see easily
from the structure of the fitted system and the algorithm of
the stratified control that the finger relocations are decoupled.
While a finger is being relocated, the joint variables of other
fingers do not change (see constant intervals in Figure 12).
The process of two finger relocations during the manipula-
tion is illustrated in Figures 15 and 16 (in fact, the other two
fingers are also relocated in the same way). They snapped a
state when one of the fingertips is being relocated, i.e., it is
not in contact with the object. After the finger relocations, the
manipulation is followed by a new local manipulation task in
the next subsegment as before (Figures 17 and 18). The ad-
vantage of the demonstrated fitted stratified manipulation is
simpler symbolic computation. As a matter of fact, the sym-
bolic computation related mainly to Hall coordinates (see the
Appendix) is reduced to almost pure numerical computations
due to the simple vector fields. The fitted stratified MP enables
us to interpret the fingertip motions directly from the result
of its MPA and it is not needed to decode them from the joint
variables.
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Fig. 12. The real inputs belonging to the joint variables of
finger 1.

It belongs to future work how to perform a finger relocation
generally at arbitrary manipulation planning, when one finger
is about to leave its own workspace. Although the quadrants
as workspaces provide intuitively a reasonable structure to
establish a grasp with force closure stability, the method does
not ensure force closure stability automatically. It is required
to choose reference contact points on the surface in an appro-
priate way. It is one of the reasons that motivated us to devise
the fitted semi-stratified manipulation.

The simulation result of the manipulation using fitted semi-
stratified manipulation leads to a similar simulation result as
the fitted stratified MP. The difference between them is found
only in finger relocations and the way of choosing the refer-
ence points. The semi-stratified motion planning is devoted
primarily only to object manipulation because the fingertips
are not chosen in an arbitrary way. For reference states, we
adopt the procedure of the fitted stratified approach excepting
one difference. The method has two main parts. The desired
final states for semi-stratified manipulation in a subsegment
during the object manipulation phase is given by the object
motion with fixed contact points to the surface. Then the ac-
tual fingertip configurations will be the initial state of a second
phase, namely, of unconstrained finger relocations. The pre-
scribed final states for the unconstrained finger relocations
are the contact points in the lines x = ±y, z = 0 as before at
the fitted stratified manipulation. So the fingertips are pulled
back into z = 0. The semi-stratified approach sets apart a
systematic finger relocation task from the object manipula-
tion, ensuring collision avoidance and force closure stability
(it can be seen similarly to Goodwine (1999)). At the same
time, the fingertips cannot be relocated to an arbitrary place on
the surface. The object motion implied by the semi-stratified
approach coincides with the pure stratified approach (Fig-
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Fig. 13. Snap 1. The initial configuration.
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Fig. 14. Snap 2. Object manipulation phase in the bottom
stratum.
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Fig. 15. Snap 3. Finger relocation in the higher stratum.

ures 13–18). However, the motion of the fingertips during the
relocations is not necessarily the same. Semi-stratified con-
trol gives a greater freedom in choosing the path of the fingers
when they are not in contact with the object. At the same time,
this technique is not as unified as the (fitted) stratified MP.

In addition, one needs to solve an extra computational task
in “free” space for relocating the fingers from a surface point
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Fig. 16. Snap 4. Another finger relocation in another stratum.
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Fig. 17. Snap 5. The final configuration of fitted stratified
manipulation in the first subsegment.
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Fig. 18. Snap 6. The final configuration in the last subsegment.
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to another one. It is also worth remarking that fitted semi-
stratified manipulation can be applied specifically only for
the manipulation problem posed in Section 2.

The software for fitted stratified and fitted semi-stratified
manipulations has been implemented in MATLAB. Its pro-
gram frame realizes smooth and stratified MPA. The imple-
mentation also handles the unconstrained finger relocation
problem. The unconstrained finger relocation algorithm uses
the simple approach summarized before, i.e., it puts 3 straight
line trajectories together (detaching object, traveling above
object, attaching object). The simulation is based on MAT-
LAB’s Control and Symbolic Toolbox. The software package
is also able to assign time scaling to manipulation (Harmati
et al. 1999, 2000b) that have been built in the basic stratified
MP method (Goodwine 1998). The software does not handle
the singular configurations.

8. Conclusions

This paper has proposed two manipulation methods based
on the fitted model. Both of them rely on stratified motion
planning and aim to reach a final configuration through the
end points of connected subsegments composing the desired
trajectory. The fitted system provides simple control vector
fields. It reduces the complexity of the differential geometric
computations playing an important role for motion planning
algorithms based on symbolic treatments.

The method using stratified MP on a fitted system shows
advantages in comparison to the earlier stratified motion plan-
ning, such as avoiding the hard symbolic computation, easily
interpretable trajectory. It also assists in reducing the sym-
bolic steps almost to pure numerical computations. The fea-
tures are based on the special parameterization of the fitted
system. Furthermore, it is easy to check a property of the fitted
model such as the stratified controllability. The method can-
not keep the fingertips automatically in their regions since we
do not know anything about the trajectory between the initial
and final points in a subsegment. It results that the realization
needs extra functions on the higher level which check fingerip
positions on-line and modify the specifications in a subseg-
ment, if it is necessary. It assists in avoiding collisions. If the
specifications of the manipulation task guarantees collision
avoidance then the technique is able to perform an dextrous
manipulation in that (fingertip and object) region, i.e., both
the desired object position, orientation and the fingertip po-
sition become reachable. In return, one has to accomplish an
extra transformation between the original and the fitted sys-
tems. This transformation related to Jacobian matrices of the
fingers is to provide the physical control signals represented
by the joint variables. Although the transformations require
additional steps, their usage become useful because they make
it possible to reduce the most complex parts of the symbolic
computations. One drawback of the method appears in the

issue of grasp stability. It is not guaranteed during the manip-
ulation unless one takes into account higher level considera-
tions such as the generation of appropriate reference fingertip
trajectories.

The elimination of this drawback is one of the main mo-
tivations to fitted semi-stratified manipulation. The method
differs at two main points from the above mentioned strati-
fied version. First, it requires suitably chosen reference contact
points. Second, it extends the fitted stratified approach with
unconstrained finger relocations. The technique which pro-
vides appropriate contact points also restricts manipulation.
Namely, dextrous manipulation becomes rather only object
manipulation. However, it ensures collision avoidance and
grasp stability at the same time. The unconstrained finger
relocations in the semi-stratified approach realize a second
phase in the manipulation after the fitted stratified manipula-
tion is executed. It accomplishes a finger relocation algorithm
with a greater freedom than the stratified approach. The finger
relocations necessitate extra computations but they increase
the degree of freedom in the fingertip motions. Namely, a fin-
ger can be relocated along an arbitrary path above the object
while a fitted stratified approach should move the fingertip
along only one certain direction above the object at a time.

The two methods result in the same object motions during
the simulation but the fingertips followed different trajecto-
ries. The paper demonstrated the algorithms via a smooth ob-
ject manipulation example using a four fingered robotic hand.
The fitted concept may allow us to divide the configuration
space of the bottom stratum into slices (subspace decompo-
sitions) where one can hopefully increase the freedom using
more than one active input at any time. It motivates our future
work to devise new methods toward a certain class of trajec-
tory tracking. Our another intention is to extend the method
for object manipulation where the object surface is not smooth
but has edges.

Appendix

In the appendix, we give some basic definitions of differen-
tial geometry and provide a brief summary of smooth motion
planning (Lafferriere and Sussmann 1991).

DEFINITION 10. (Control vector fields) Consider the nonlin-
ear system given by

% : ẋ = u1g1(x)+ . . .+ umgm(x) = G(x)u, x ∈ R
n.

(A1)

The control vector fields of the system are defined by the
vector fields g1, . . . , gm.

In this paper the control vector fields play an important
role because the proposed motion planning algorithms utilize
them. The most important operation is the Lie bracket. By
definition, the Lie bracket of two vector fields g1 and g2 is
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described by

[g1(x), g2(x)] = ∂g2(x)

∂x
g1(x)− ∂g1(x)

∂x
g2(x). (A2)

The Lie brackets for a small time ε can be also interpreted
by the sequence of flows via the Campbell-Baker-Hausdorff
formula:

#ε

−g2
◦#ε

−g1
◦#ε

g2
◦#ε

g1
(x) = ε2[g1, g2](x)+O(ε3). (A3)

In the most cases, one adopts only the second order approxi-
mation. The Lie brackets have a crucial importance because
they define “new directions” in which the system may move.
They are also linearly independent of the vector fields they
are derived from. Lie brackets satisfy the skew symmetry and
the Jacobi identity supporting to define a Lie algebra.

DEFINITION 11. A vector space V (over R) is a Lie algebra
if there exist a bilinear operator V × V → V denoted [·, ·],
satisfying

1. Skew symmetry: [g2, g1] = −[g1, g2]
2. Jacobi identity:
[g1, [g2, g3]] + [g2, [g3, g1]] + [g3, [g1, g2]] = 0

where g1, g2, g3 ∈ V .

DEFINITION 12. The Lie algebra generated by the control
vector fields of the system is called the control Lie algebra.

To control a nonlinear system, it is important to find a basis
for the control Lie algebra which points out all the possible
directions for the trajectory in the configuration space. It is
not elementary to generate this kind of basis because of the
skew symmetry and Jacobi’s identity. The Hall basis can be
considered as a possible way.

DEFINITION 13. (Hall basis.) Given a set of vector fields
{g1, . . . , gm}, define the degree of Lie product (bracket) as

l(gi) = 1 i = 1, . . . , m

l([X, Y ]) = l(X)+ l(Y ), (A4)

where X and Y may be Lie products, as well. A Hall basis is
an ordered set of Lie products H = {Bi} satisfying:

1. gi ∈ H , i = 1, . . . , m

2. If l(Bi) < l(Bj ), then Bi < Bj

3. [Bi, Bj ] ∈ H if and only if

a) Bi, Bj ∈ H and Bi < Bj , and

b) either Bj = gk for some k or Bj = [Bl, Br] with
Bl, Br ∈ H and Bl ≤ Bi .

The Hall basis play a central role in the smooth MP
achieved by sequence of flows. Before the exact mathemati-
cal treatment, it is worth discussing an overview of the idea.
We want to steer a system (e.g., finger/object system) from
an initial state xI to a desired state xF in the n dimensional
configuration space.

If the control vector fields span the whole configuration
space then it is a simple task since the vector fields support
movement in any direction in the configuration space (plan-
ning the straight-line segment between xI and xF is the sim-
plest one). This implies the need of n independent control
vector fields.

However, in general, the system has less input controls
than n (and at the same time the system may still be control-
lable). The key point is that extra possible moving directions
are acquired if we move the system not only along the control
vector fields but along their Lie brackets. Extending the sys-
tem with these new directions and associating fictitious inputs
to them, one can span the whole configuration space and solve
the problem for this fictitious system.

MPP for the fictitious (i.e., extended) system is solved as a
sequence of flows along the control vector fields (Figure 19).
This specification implies restrictions on the solution for the
MPP because the task is not so easy comparing with the case
where one could move in any direction determined by the
combination of n independent vector fields. In spite of the re-
strictions, the benefit of the procedure arises from the fact that
it makes the transformation between the original and extended
systems possible.

The only remaining problem is to replace these extra direc-
tions and control inputs with the original ones. If the system
moves along only one of the all control vector fields at a given
time then the substitution is not a difficult problem because,
by definition, the extra directions (defined by Lie brackets)
and their inputs can be substituted with appropriate original
flow sequences.

Using this “flow sequence” philosophy, one can reach xF

exactly, if the system is nilpotent because, only in this case,
each flow along any recursive Lie bracket can be developed
exactly as a finite combination of the control vector fields.

A more detailed discussion now follows. Consider a
smooth nonlinear system with m inputs which has no drift,
i.e., % : ẋ = u1f1(x)+ . . .+umfm(x) = F(x)u, x ∈ R

n. As-
sume that the vector fields fi are real analytic and the system
% is controllable.

DEFINITION 14. Nilpotent Lie algebra with order k is defined
by Lie algebra L of the vector fields fi where all the Lie
brackets [fj1 , [fj2 , . . . , [fjk , fjk+1 ] . . . ]], ji = 1, . . . , m equal
zero.

DEFINITION 15. The system % is said to be nilpotent if its
control Lie algebra L(f ) is nilpotent.

If the system is nilpotent, each exponential of Lie brack-
ets can be developed exactly as a finite combination of the
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control vector fields: such an operation can be done by us-
ing the Campbell-Baker-Hausdorff formula. The algorithm of
the smooth MP outlined previously consists of the following
steps.

ALGORITHM 4. (Smooth MP (Lafferriere and Sussmann
1991))

Step 1. System extension. Extend the system % to

%e : ẋ = v1f1(x)+ . . .+ vmfm(x)

+ vm+1fm+1(x)+ . . .+ vrfr(x)

= Fe(x)v, (36)

where span{fm+1(x), . . . , fr(x)} = R
n and vector

fields fm+1, . . . , fr are defined by the elements of
the Hall basis as higher order Lie brackets of the fi ,
i = 1, . . . , m.

In this step, we created a system (from the original one)
whose vector fields support moving in any direction in
the whole configuration space because we have at least
n independent vector fields. Moving along a vector field
can be realized by the corresponding fictitious input
v. In general, some vector fields in the original and
extended systems are the same, so their corresponding
inputs will coincide as well.

Step 2. Steering the extended system %e along any arbitrary
path. Attain a control v that steers the extended system
%e from xI to xF . Since the vector fields of %e span
the whole configuration space R

n, it is easy to plan the
fictitious input v to the prescribed path. In general, one
prescribes the simplest path, i.e., a straight-line trajec-
tory segment in the configuration space between xI and
xF . Based on this, one can obtain the fictitious control
v from the equation ẋ = Fe(x)v.

Step 3. Solving the MPP for the extended system %e as a
sequence of flows. In the previous step, the fictitious
control v solved the MPP for the extended system ac-
cording to an arbitrary desired trajectory between xI

and xF . In this step, we derive a special solution (from
the fictitious control v) as a sequence of flows along the
control vector fields of the extended system (the type
of this solution is very important for the stratified MP).
The step is broken into two parts:

I. Search the solution of the MPP for %e as a se-
quence of flows. In other words, one has to solve
the formal differential equation (Sussmann 1992)

%fe : (A6)

Ṡ(t) = S(t)(v1(t)f1 + . . .+ vm(t)fm

+ vm+1(t)fm+1 + . . .+ vr(t)fr)

X
I

fj 1

tΦ 1

fj 2

tΦ 2

X
F

t3
2

Φ

fj 2

tΦ 3

j 1
-f

tΦ 3 j 2
-f

tΦ 3

fj 1

tΦ 3

fj 1

fj 2
fj 1,

[ ]

tΦ 3

Fig. 19. Approximation of Lie bracket in a flow sequence.

on the Lie group in the form

S = eh̃1B1 · · · eh̃z−1Bz−1eh̃zBz (A7)

where Bi are the Hall basis, h̃i are the forward
Hall coordinates. The notations in (A6) follow a
special convention discussed briefly in Sussmann
(1992). The solution S also solves the MPP be-
tween xI and xF . However, one cannot plan a de-
sired trajectory between the two points. At first,
the system moves for a time |h̃1| along the vec-
tor fields which is symbolized by the Hall base
B1 with |v1| = 1 (the sign of v1 is determined by
the sign of h̃1 and vi = 0, i �= 1 ) . After this,
the system moves along the next vector field rep-
resented by B2 for a time h̃2 while |v2| = 1 and
vi = 0, i �= 2 and so on up to the zth Hall base
and coordinate. As a result, one gains a sequence
of flows wthat leads eventually the system from
xI to xF . Note that the differential equation (A6)
is formal so the solution for the Hall coordinates
will be formal as well. To obtain an exact solution
where eq. (A7) has numerical Hall coordinates,
we need to follow the next step.

II. Compute the Hall coordinates. If the degree of
Bi = 1 for 1 ≤ i ≤ z then the corresponding
forward Hall coordinate is given by

h̃i(t) =
t∫

0

vi(s)ds. (A8)

For the other case, Bi can be given in the recur-
sive form Bi = [Bj, Bk] determining the corre-
sponding forward Hall coordinate by evaluating
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the recursive formal integrals

h̃i(t) =
t∫

0

(−vj (s)h̃k(s)+ vi(s))ds. (A9)

Step 4. Obtain the control u from the Hall coordinates. Ac-
tually, if the degree of a Hall base is more than one,
then one should substitute the corresponding system
motion with extra flow sequences along the original
control vector fields. For example, a single Lie bracket
substitution can be seen in Figure 19. Since the solu-
tion of MPP for the extended system %e uses the vector
fields f1, . . . , fr separately (i.e., there is only one ac-
tive vector field at a time), we can substitute separately
the flows along fm+1, . . . , fr with a sequence of flows
consisting only off1, . . . , fm . For this substitution, one
can use the Campbell-Baker-Hausdorff formula to each
flow whose vector field is constructed by Lie brackets,
i.e.,

#ε2

[fi1 ,fi2 ](xI ) ≈ #ε

−fi2 ◦#
ε

−fi1 ◦#
ε

fi2
◦#ε

fi1
(xI ),

(A10)

where, in general, #ε
fi

denotes the flow along a vector
field fi for a small time ε. In our application, fi1 and
fi1 are represented by (any) two control vector fields of
the original system % belonging to ui’s.

Following this procedure, every flow in the sequence
will be defined along precisely one of the control vector
fields of the original system.

REMARK 1. If the system is not nilpotent then the solution
is only an approximation.

Nomenclature

q̄i = the vector of joint variables belonging to the ith finger.
ui, vi = the coordinates of the projection of ith fingertip

position onto the surface expressed by the exact parameters
of the surface.

zi = the distance of the ith fingertip from the surface.
ud

i
, vd

i
= fictitious inputs. The desired coordinates of the

projection of ith fingertip position onto the surface expressed
by the exact parameters of the surface.

zd
i
= fictitious input. The distance of the ith fingertip from

the surface.
ppfi = the ith fingertip position in the palm frame.
ppf = the vector of all the fingertip positions ppf =

(ppf1 , . . . , ppf4)
T .

po
pfi
= the ith fingertip position expressed by the object

coordinates: po
pfi
= (ui, vi, zi)

T .
p

o,d

pfi
= the desired ith fingertip position expressed by the

object coordinates: po,d

pfi
= (ud

i
, vd

i
, zd

i
)T .

vpfi = the velocity of the ith fingertip as seen in the palm
frame.

ωo = the angular velocity of the object as seen in the palm
frame.

vo = the linear velocity of the object as seen in the palm
frame.

ωd
o
= fictitious input. The desired (reference) angular ve-

locity of the object as seen in the palm frame.
vd
o
= fictitious input. The desired (reference) linear veloc-

ity of the object as seen in the palm frame.
Jpfi = the Jacobian matrix of the ith finger.
Jpf = hypermatrix whose diagonal consists of the Jacobian

matrices of the fingers.
J v
pfi
= the reduced Jacobian matrix of the ith finger con-

taining only the rows belonging to linear velocities.
J v
pf
= hypermatrix whose diagonal consists of the reduced

Jacobian matrices (in order).
J v
pf{234} = hypermatrix whose diagonal consists of the re-

duced Jacobian matrices of fingers 2, 3 and 4.
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