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Abstract— This paper addresses the problem of co-
ordination between two robotic agents to perform the
clean up and collection task. In this novel game the-
oretic based approach, we assume that there exists no
inter-robot communication or central controller, each
robotic agent is considered to perform the task inde-
pendently, and compete with each other. Two scenarios
are considered: one case considers the capacity of the
robot equals to one. Here the problem is formulated
into two-person zero-sum, multi-stage game. Through
solving the game, the proper strategies can be obtained
for each robot. In the second case the capacity of each
robot is assumed to be infinite, a heuristics algorithm
based on game theory is proposed to solve the problem.
Preliminary simulation results indicate the approach ef-
fectively produce the plan for each robot.

I. INTRODUCTION

Cooperation between multi-robot systems is an es-
sential requirement for the successful completion of
many tasks. The problem oriented from the situation
that some tasks can not be achieved by one robot,
such as multiple robots handling and moving a large
and heavy object[1], [6], [7], and robot soccer player[9].
[1] proposed a quasi-static object reconfiguration algo-
rithm with multiple dextrous agents. [7] discuss the
agent-based architecture for the grasping tasks of a
dextrous end-effector, a novel rating system is used
to calculate the utility of agents and distribute the
task among the agents. [9] proposed a centralized
on-line multi-agent system for robot soccer game, the
system composed several parts-robots, vision system,
communication devices. And the other concern of us-
ing multi-robot systems is to increase the performance
and reliability, which leads several robots are gath-
ered to perform a distributed task[2][10]. [2] discuss
the multi-robot task division based behavior-based ap-
proach. The paper studies a territorial approach to the
task in which the robots are assigned individual terri-
tories that can be dynamically resized. [10] consider
the problem of exploring an unknown environment
by a team of robots. There are some advantages for

multiple robots to work together: a), multi-robot can
achieve distributed action and inherent parallelism, b),
a group of simpler robots can fulfill a task easier than
a complicated single robot, c), the overall reliability of
the systems is improved by using multi-robot system.

While the use of robot groups has benefits, the main
problem associated with the multiple robot systems
lies in how to cooperate or coordinate the robots and
get better performance. Many attempts have been
proposed to effectively carry out a task[1]-[7]. One
method is called master/slave method[3]. It is a cen-
tralized planning approach, which assume that only a
single planner exists, a single agent capable of plan-
ning and organizing actions for all the other agents,
and allocate task to the agents. The main drawbacks
of this type of approaches are: 1), there is a com-
munication bottleneck between the master and slave
agents. 2), the robustness problem, for example, if the
planner agent fails, the system structure needs to be
reorganized.

The other class of approaches are developed based
on behavioral theory[2], [4]. In this method, the robot
goals are decomposed into a collection of primitive be-
haviors, these behaviors are either, activated via ar-
bitration, or permitted through concurrent activation.
In [4], multi-robot navigation for object retrieval was
proposed using schema-based behavioral method.

Game theory has been used in motion planning of
robots [6], [8]. [6] considers motion planning and co-
ordination of multiple robots under independent per-
formance measure for each robots. Given the indepen-
dent performance measures, through using the con-
cept of dynamic game theory, a set of motion plans
are found with a natural partial ordering. [8] discuss
a game theoretic approach to the design of closed loop
feedback laws to solve sensor-based planning for mo-
bile robots, the planning problem is formulated as two
person zero sum game, where one player is the robot,
and the other is obstacle.



Unlike the works of [6], [8], we consider the prob-
lems of task scheduling for robotic agents under no-
communication, and propose a new framework for task
scheduling problems of two robotic agents based on
game theory. The demonstrative example of the dis-
tributed clean-up and collection problem are consid-
ered. Here we restrict that each robot will choose
its strategy independently without a central planner’s
guidance, or communication. Each robot is equipped
with a map of the work-area, which enables it to cal-
culate the cost for the collection and clean-up. Since
two robots share the same workspace and resource(
workpieces), conflict situations will occur and need to
be solved, where noncooperative game theory provides
a useful tool to solve this problem. Two different sce-
narios are considered: for the case where the capac-
ity k = 1, the given cooperation problem can be for-
mulated into two-person zero-sum multi-stage game.
Through solving the game, a series strategies for each
robot are obtained. For the case of infinity capac-
ity, the problem becomes a distributed traveling sales-
man(TSP) problem[13]. A heuristics algorithm is pro-
posed. Each robot obtains the heuristics for the se-
lection of next workpiece based on the game between
them.

The remainder of the paper is organized as follows:
section 2 provides the problem description and brief in-
troduction about game theory, in section 3 we present
the optimal strategies derivation for each robot based
on the game theory and solution of the game. Section 4
gives some simulation results, and section 5 concludes
the paper and outlines the future work.

II. PROBLEM DESCRIPTION AND GAME THEORY

The details of the distributed clean-up and collection
problem addressed are as follows. Consider there are
several workpieces in a factory floor, and two robots
perform collection and delivery home task. Each robot
knows exactly the distribution of the workpieces,i.e.,
each robot have information of the world. The ca-
pacity of the robot in one case is k = 1, that is, the
robot can only carry one workpiece home each time,
the other case is k = 00, this means that the robot can
collect all the workpieces, then return home. The com-
munication between robots is prohibited, the objective
of the task is to minimize energy of robots spent on the
collection and delivers tasks. Assume there is a given
reward for each workpiece, since the workpiece can be
viewed as common resource to the robots, the robots
compete with each other in order to get more reward in
the collection process. The problem can be formulated
into a two-person zero-sum game where each robot is
a player of the game, and has its performance index.
The goal of the system is that through the suitable

strategies, two robots collect all the work pieces, and
each robot minimize its energy without explicit com-
munication between them.

The theory of games can be described as a mathe-
matical theory of decision making by participants in
a competitive environment[12]. In a typical problem
to which the theory is applicable, each participant can
bring some influence to bear upon the outcome of a
certain event. No single participant by himself nor
chance alone can determine the outcome completely.
The theory is concerned with the problem of choosing
an optimal course of action which takes into account
the possible actions of the participants and the chance
events.

Based on the description of the example problem
and the properties of game theory, we can propose
that game theory can provide a useful framework for
the coordination of multiple robots. When there is no
communication between robotic agents, the coordina-
tion can be formulated as non-cooperative games. If
there exists the communication between robots, the
cooperative game theory will provide solution concept
for each agents. In this paper we consider the situation
of coordination under no communication. The detail
will be given in next section.

III. COORDINATION AND COMPUTATIONAL
STRATEGIES

A. Coordination under game theoretic framework

Consider the home positions of two robots are
(210, Y10), (z20,Yy20) respectively, and the positions of
the work pieces are located at (zp,yx) for (kK =
1,2,---,n). We assign the reward for collecting a
workpiece as Ri(k = 1,2,---,n), which can be viewed
as a constraint associated with different workpiece( e.g.
priority in the planning production line). We also can
define following profit for robot i (i = 1,2) collecting
workpiece k, which is the difference between the re-
ward of the workpiece and energy spent on collecting
it, and it can be formulated, for example, as

3 1
l;c = Rk — Em,sfk (1)
Where g
six is the distance between the home position of the
robot i and the workpiece k, calculated as follows:

V(@io — z)2 + (yio — yk)?
when robots move directly to the object (2)
llzio — k[l + llyio — ykll
when robots move horizontally and vertically

Sik =

my; is the energy coeflicient for robot i.
And the total profit for each robot is defined as

L= Z H 3)
k



Until now, each robot has its objective to maximize
the total profit, since the amount of total profit that
one can make is negatively affected by the presence of
the other robot. They will compete with each other
in the collection of workpieces through maximizing its
objective. Hence we can formulate the process as a
two-person zero-sum game. Each robot has n + 1 op-
tions( strategies) to choose from for his action for the
n workpieces case.( we also consider the null-action).
The payoff function of the game can be defined , for
example, as

Which means that the robot 1 will gain the amount
of a;; when the robot 1 choose its action 4 and robot
2 choose its action j, while robot 2 loses the same
amount. When there is a conflict situation that both
robots select the same workpiece( i.e., i = j), we
assume that two robots are given different priorities
p1,p2. The robot with higher priority can get the
workpiece, while the other one loses energy without
reward. For this case, the payoff function can be de-
fined as

. { I} +imsys?, when pi >po
Qi = 2_"1 2
—l7 — 5misy; when p; <po

— 71 2

(5)

We can now determine the payoff matrix with entries
defined by (4), (5). The problem is then formulated as
a two-person zero-sum game.

In the game, robot 1 always wants to maximize the
outcome of the play, robot 2 seeks to minimize the
outcome based on the selection of suitable strategies.
i.e. For any strategy ¢ which robot 1 choose, it can be
sure of getting at least

mjn Qij
J

where the minimum is taken over all of robot 2’s strate-
gies j. Therefore, robot 1 can make its choice to insure
that it gets at least
max min a;;
i
Similarly, for any strategy j which robot 2 choose, it
can be sure of losing at most,

max a;;
k3
where the maximum is taken over all of robot 1’s

strategies i. Therefore, robot 2 can make its choice
to insure that it loses at most,

min max a;;
J K3
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Fig. 1. Information structure of the game
If it happens that
MAax min a;» j» = Min max ;- j« (6)

i* j* j* i*

then robot 1 can not do better than to choose strategy
1*. Similarly, robot 2 can not do better than to choose
7%, and the game matrix has a saddle-point at i*, 5%,
the value of a;«;~ is the value of the game. If a game
does not possess a saddle point, and in which play-
ers act independently, the players make their decision
based on the outcome of random events, thus leading
to the so-called mized strategies. This is an especially
convincing approach when the same game played over
and over again, and the finial outcome, sought to be
maximized by robot 1 and minimized by robot 2, is
determined by averaging the outcomes of individual
plays. This also provides a solution concept for the
game in next section.

The information structure of the decision making
of each robot is illustrated in Fig.1. The information
structure of the game basically involves a tree struc-
ture with several vertices and edges, providing explicit
description of the order of play and the information
available to each player at the time of his decisions.
The game evolves from the root to the leaf of one of its
branches. The edges represents the payoff between two
players, the dotted line enclosing areas are the infor-
mation set. If the nodes of possible strategies of robot
2 are included in the same dotted area, implying that,
even though robot 1 acts before robot 2, robot 2 does
not know the decision of robot 1, which is equivalent
to the case that two robots act simultaneously. For
the multi-stage game, at each instant of action, each



robot has perfect information concerning the current
stage of play. The information set of robot 1 at every
stage of play are singleton. The information sets of
robot 2 at every stage of play are such that none of
them includes nodes corresponding to branches origi-
nating from two or more different information sets of
robot 1, i.e. each robot knows the state of the game at
every stage of the play, which implies that each robot
knows the number of workpieces left for picking up. In
the case of n workpieces, the total stage of the game
is [2].

For the case k = 1, it will need [%] rounds to finish
the collection work, hence the game becomes a multi-
stage game, and the dimension of the square payoff
matrix reduces by 2 after each play since each play
there are two workpieces being collected.

For the case kK = oo, the pick-up and clean process
is just like the traveling salesman(TSP) problem[13],
and the workpieces and home position of robots are the
sites in TSP. Each site will be visited by one robot, the
route of each robot will become a sub-path consists of
some of the sites. Just like the TSP problem, we can
not compute the optimal solution in polynomial time
O(n!) (n is the number of sites need to be visited,
is a positive number), what we can expect is to find
a feasible solution in polynomial time. Heuristics al-
gorithm provides a useful means to solve this class of
problems, and the key is the choice of the heuristics
function[13]. One possible procedure is starting from
a sub-path which consists only of home position for
each robot, and iteratively adding new workpieces ac-
cording to a heuristics function f(W,T1,T)(defined
latter). Hence, such heuristics have general structure
given as follows pseudo code,

input Set of workpieces W = {w1,---,wn}, and initial position
of robots r10,720;
Output Permutation T' = T1 U T2, where T1 = (Wry,* "+, Wry ),

Ty = (Wry4qs° " Wny, ) are the sub-paths for the robots, which
consists of the order the workpieces that each robot collected.
Begin

T1 := 1105

T5 := 7205

While W # 0 do

Begin

Let [w!,w?] = f(W,T1,T2) € W be the workpieces satisfying
the predefined criterion;

Insert w! in T, w? in Th;

W =W — {w!,w?}

end
end

Alg.1. Construction heuristics algorithm for k = oo

where [w!,w?] = f(W,Ty,Ts) represents a heuris-
tics function, the value of it is the next workpieces to
be selected by the robots to pick-up, i.e., the next two
workpieces to be inserted in the sub-paths T, T>. Here

Ty, T5 are the sub-paths consist of the workpieces al-
ready picked by robot 1 and robot 2, W consists of
the workpieces left in the workspace. And f(.) repre-
sents a game between robot 1 and robot 2 under the
condition that W is left for picking up, and w',w? is
the result of the game, denoting the strategies chosen
by the robots( workpieces to be inserted into the sub-
paths). The game is as same as the case of k = 1. But
unlike for the case k = 1, each robot will stay at the
place where the workpiece it last picked, so the dis-
tance s;, in (2) needs to be re-calculated, so does the
payoff matrix after each move of the robot.

Next section will give the approximation procedure
for solving the game, and propose the optimal strate-
gies for each robot.

B. Solution of the game

The solution of a two-person zero-sum game can
be calculated using successive approximation method.
The method requires only two operations: location of
the maximum or minimum of a discrete set of num-
bers and addition. Given a game defined by a payoff
matrix A = (a;;), whose solution is unknown, one way
of determining an optimal strategy for each players is
to play the game many times, each time selecting the
pure strategy which is best against the opponent’s to-
tal performance to the play. The relative frequencies
of these strategies will yield an approximate solution
to the game.

The method can best be illustrated by an example.
Suppose we are given the game defined by the payoff
matrix

Ro1 Ry Ros
R 2 1 0
Ry 2 0 3 (™)

Rz -1 3 =3

where Rj; represent Robotl’s strategies and Ro; ,
Robot2’s strategies. Assuming that Robotl begins the
series of plays by selecting Rj;, the successive approx-
imations are shown in table 1. The symbols in the
table have following meaning: N is the number of the
play; () is the pure strategy chosen by Robotl for
the Nth play; K;(N) is the total receipts of Robotl
after N of his plays if Robot2 used his pure strategy
Ry constantly, and similarly K»(N) and K3(N); v(N)
is the least that Robotl can expect to receive, on the
average, after N of his plays; j(IV) is the pure strategy
chosen by Robot2 for his Nth play; Hy(N) is the total
receipts of Robot2 after NV plays of Robot2 against the
constant strategy Ry1 of Robotl, and similarly H (V)
and H3(N); 7(N) is the most that Robotl can expect



to receive on the average, after N plays of Robot2.

y(N) = 5 min K (V) (®)

B(N) = 1 max Hy(N) (9)

and the optimal strategies can be determined by cal-
culating the relative frequencies of each of the pure
strategies in the table, i.e.,

X = ERll ERm ZR13
- N N N

ZRQI ER22 ER% (10)
N N N
since we have, for all N,
U(N) < v < (V) (11)

If

X = lim X(N) and Y = lim Y(N)
N—oo N—o0

exist, then the limit is a solution of the game, and the

value of the game is

v= lim 7(N)= lim y(N) (12)
when v = 7, the game will terminate,

Table 1 illustrates the play till N = 12, and it has
been completed as follows: For the first play of the
game, assume that Robot1 chooses R;i1. Then Robotl
receive 2, 1 or 0 depending on whether Robot2 chooses
Rs1, Roo or Ry3. Robot2 will therefore choose Ry3 for
his first play, since that minimizes Robot1’s receipts;
and Robot1 will thus receive 0,3 or —3, for the second
play, Robot1 will choose R1 since that will maximizes
his receipts against Robot2’s first play. Thus after two
plays, Robotl has received a total of 4,1, or 3 de-
pending on whether Robot2 chooses Ra1, Roa or Ras.
Robot2 will therefore choose Rs» since that minimizes
Robot1’s receipts for N = 2, and makes Robot1’s re-
ceipts total 1,3 or 0, depending on whether Robotl
chooses Ry1, Rao or Ra3, we obtain

v(2) =05 7(2) =150 (13)

The process is identical for all successive V.
Thus at N = 12, we have

X:(%a%:%)a Y:(%a%ali) (14)

The value of the game is approximated by v(N) and
7(N). Thus at N = 12, the value of the game is be-
tween 0.75 and 1.00. Since v # 7, the play will con-
tinue. Fig. 2 shows the values of minimum gain v of

N i) K K K(Y) u()
1 Ry 2 1 0 0.0
2 Ry 4 1 3 0.5
3  Rys 6 1 6 .333
4  Rys 8 1 9 .25
5 R 7 4 6 .80
6 Ris 6 7 3 .50
7 Rz 8 7 6 .857
8 Rys 10 7 9 875
9 Rps 12 7 12 778
10 Rpo 14 7 15 .700
11  Ri3 13 10 12 909
12 Ry3 12 13 9 .75
N j(N) Hy(N) Hy(N) H3(N) 7(N)
1 Rs3 0 3 -3 3.0
2 Ry 1 3 0 1.5
3 Ry 2 3 3 1.0
4  Ros 3 3 6 1.50
5 Ry 4 3 9 1.80
6 Ros 4 6 6 1.0
7 R 4 9 6 1.286
8 Rss 5 9 6 1.125
9 Ry 6 9 9 1.0
10 Roe 7 9 12 1.20
11 Rss 8 9 15 1.364
12 Rs3 8 12 12 1.0
TABLE I

EXAMPLE OF SUCCESSIVE APPROXIMATIONS

robot 1, and maximum loss 7 of robot 2 at each iter-
ation. It is clear that v and 7 will converge, and the
strategies for robot 1 and robot2 converge to
X=(02.4), Y=021 (15)
The pseudo code of the successive algorithm can be
summarized as follows:

Initialization 1. i(1) = Rix;

2. compute the payoff K1(1), K2(1),---,Kn(1).
While v #7 do

1. Compute K;(N) as

oy aij (1) for N=1
KJ(N)—{Ki(N,UjLaU(N) for N>1

2. compute the Receipt of Robotl v as
1
u(N) = Ky (N)
3. Compute Robot2’s strategy j(IN) at stage N as

G(N), Kjnvy(N)] =

min [ Ki(N) Ks(N) --- Kj(N) Ku(N) ]
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Fig. 2. Result of the example game

4. Compute H;(N) as
Hi(N) = { Hi(N _aif)(i) ai; (N) for N1
5. Compute the Lost of Robot2 ¥ as
P(N) = — Hiw) (V)
N
6. Compute Robotl’s strategy i(N) at stage N as

[i(N), Hyny(N —1)] =

max [ Hi(N —1) Hiny(N —1) Hp(N —1) ]
End
Compute the optimal strategy as
1 ol 1 ol
X(N) =D ik, YN =D 50
k=1 =1

Alg.2. Successive algorithm for two-person zero-sum game

IV. SIMULATION RESULTS

In previous section, we proposed a method to coor-
dinate two robots to collect workpieces based on game
theory, here we give an example to demonstrate the
efficiency of the method.

In the example, we consider 7 workpieces in the
workspace as shown in Fig.3, the workpieces are la-
beled from 1 to 7. Here we assume k = 1, and the
robots move only horizontally and vertically. The re-
ward of each workpiece is same, i.e. R = 200, and we
select m; = 5,ms = 10. Consider robot2 has higher
priority, the unit of the square is 1, then we can cal-
culate the performance index according to (1) as

. 1 9

for example, for the workpiece 1, if robot 1 collect it,
li:200—%-5-62:110 (17)
for robot 2
l2:200—%-10-42:180 (18)

At the first stage, there are 7 workpieces, this means
that there are 8 strategies for each robot( consider the
robot stay still). We calculate the pay-off function
according to (4)

aij:lzl_l?' (i7j=1727"'7n+17i7éj) (19)

for ¢ = j, consider the priority of the robots p; <
p2, the payoff can be calculated according to (5). For
example,

ajl = —lf - %m18%1 = -270

ary =1 =12 = 110— 75 = 35 (20)

The pay-off function can be written as following ma-
trix form.

—270. 35. —10. 35. —10. 35. —10. 110

—2.5 302.5 57.5 102.5 57.5 102.5 57.5 177.5
—20. 85. —160. 85. 40. 85. 40. 160.
A= —2.5 102.5 57.5 302.5 57.5 102.5 57.5 177.5
—20. 85. 40. 85. —160. 85. 40. 160
—2.5 102.5 57.5 102.5 57.5 302.5 57.5 177.5
—20. 85. 40. 85. 40. 85. —160. 160.
—180. —75. —120. —75. —120. —T75. —120. 0

(21)

Since at each stage each robot can only pick up one
workpiece, there will totally 4 stages to finish the task.
The strategies of each robot under different stages are
calculated using the algorithm proposed in last section,
and the strategies for robot 1 and 2 are shown in Fig.4-
5. It shows that during the stage 4 robot 2 will go to
pick it up, and robot 1 will stay there, since the robot
2 has a higher priority.

In the case of kK = 00, each robot must collect all the
workpieces assigned to him based on the game before
return home position. In the example, initially two
robots will stay at home positions, i.e., 71 = homel,
Ty = home2, W = {1,2,3,4,5,6,7}, there will be a
game between two robots, the results of the game,
i.e., the value of the heuristics function f(W,Ti,T5)
is w! = workpiecel, w? = workpiece2, this means
that robot 1 will move to position 1, while position
2 for robot 2. Both of them will stay there. Then
T, becomes homel — 1, T, becomes home2 — 2, and
W ={3,4,5,6,7}. When the algorithm continues, one
workpiece will be added to the sub-path of each robot
in each iteration. The resulting sub-path is shown in
Fig. 6, it is clear that each robot obtains a feasible tour
and finishes the collection task, the path of Robotl is
homel - 1 — 5 — 6 — 7 — homel, while the path
of robot2 is home2 — 2 -+ 4 — 3 — home2.
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Fig. 3. Initial distribution of workpieces and robots
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Fig. 4. strategies of robot 1 at each stage

V. CONCLUSIONS AND DISCUSSIONS

This paper investigates the applicability of game
theory to the coordination between two robots under
non-communication. Two robots perform the pick-
up and clean task, through defining the performance
of each robot, the payoff matrix can be obtained di-
rectly, the problem can be formulated into two person,
zero-sum game, through solving the game, the optimal
strategy can be obtained for each robot. Two different
capacity cases are considered. Simulations show that
the proposed method can produce the plan for each
robot effectively.

workpieces
stages
Fig. 5. strategies of robot 2 at each stage
. robot 2

2

Q7

robot 1

Fig. 6. Final paths for robotl and robot2

The work here provides a game theoretic framework
for the coordination between two robotic agents with-
out inter-communication. In the case of more agents,
we can coordinate them by allocating the agents into
two groups hierarchically and dynamically through the
analysis of the goals of each agents. And when we
consider robots moves along continuous path, the co-
ordination becomes an infinity dynamic game. The
result developed here is based on the assumption of
perfect information, i.e., each robot knows the state of
the play, the coordination under imperfect information
needs further investigated.
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