
Abstract
This paper presents an analysis and design of an
Enhanced Opportunistic System (EOS) and its implemen-
tation within the task of grasp planning through haptic
exploration by rolling contact. The EOS is a modular sys-
tem which has a great potential of encompassing a variety
of grasp planning strategies under one controller and
making them work together. This paper explores the mech-
anism which can make this possible. A novel rating sys-
tem, embedded within the agents of the opportunistic
architecture, is a part of the control mechanism of the EOS
allowing the agents to estimate their own worth. The rat-
ing system consists of two sub-rating components; fixed
and variable. The fixed sub-rating represents the pre-
defined ranking of the agents while the variable sub-rating
represents the opportunistic ranking of the agents. The
performance of EOS is evaluated so as to determine the
utility of the proposed two sub-rating system within the
task of grasp planning. The evaluation consists of two
parts: a) establishing what is gained by the presence of
both the sub-ratings and b) to investigate the resultant
grasps of the EOS.

1  Introduction
The analysis and design of an Enhanced Opportunistic
System (EOS) is presented here within the context of
grasp planning.

The EOS can bring all existing computational algorithms
together and leave room for any future ones. The four
properties of grasp planning sighted by Shimoga [10],
grasp dexterity measures, grasp equilibrium, grasp stabil-
ity, and grasp dynamic behaviour can all be combined
under one roof and be made to work together within the
EOS. However, the focus of this paper is the mechanism
which would allow the four above-mentioned properties to
work in a complementary fashion.

The EOS is an autonomous system which can deal with
the complex problem of grasp planning. Like the Black-
board architecture [5], the EOS has some very redeeming
properties such as: modularity and flexibility, within a cen-
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tralized control.

Overgaard et al. [8] have introduced a multi-agent frame-
work in grasp planning, which is very similar to the notion
of the Blackboard. Five types of agents, also known as
“Knowledge Sources” within the Blackboard framework
work together to achieve a goal. Occello and Thomas [7]
used a parallel structure based on the Blackboard architec-
ture to control small mobile robots.

Halpern et al. [6] have acknowledged the need for agents
of multi-agent systems to compute their own knowledge.
The authors distinguish between two types of knowledge:
externally ascribed knowledge and explicit knowledge.
The former is the type of knowledge which the system pro-
grammer gives to the system, while the latter is the type of
knowledge, which the system acquires through its inputs.
The explicit knowledge is what allows the agents to act in
a certain way. We are making use of these two types of
knowledge, as Halpern et. al. have done, but we also use
this knowledge to rate the utility of the agents of the EOS.
The utility of an agent is its usefulness factor in the current
situation.

Although the EOS is a knowledge-based system, it is not
strictly primitive driven as the knowledge-based systems
reviewed by Shimoga [10]. The system is set up so that it
can take advantage of arising, unforeseen opportunities.
This opportunistic nature is possible because of the
enhancements made to the classic architecture through the
addition of agent knowledge calculators. The agent knowl-
edge calculators consist of a rating system based on the
Bayesian Formalism.

In general, the easiest way for the controller to pick an
agent is to give them each a rating and then select the high-
est rated agent. This rating could be preassigned such that
the sequence of the agent execution is encoded within the
assigned values.

The EOS rating method is based on a Bayesian formalism.
The idea of augmenting the Blackboard architecture with
the help of Bayes' Rule is not new. However, up to now, it
has been applied only to evidence incorporation and



hypothesis generation[4][11] in the area of image and
speech recognition. Nonetheless, the idea can also be
applied to rating agents and even to the way in which the
controller chooses the most appropriate agent.

Haptic explorations of curved shapes have been investi-
gated by Charlebois et al. [1], as well as by Chen et al. [2].
Both studies have looked at curvature estimation of objects
through rolling contact, but have presented their results in
slightly different ways. Charlebois et al. have identified
two types of exploratory procedures(EPs). The first,
requires one fingertip to roll, without sliding, and the sec-
ond requires three fingers to be dragged across the surface
of the object while keeping the object fixed.

This paper introduces a mechanism, consisting of a rating
system, which allows agents to calculate their own knowl-
edge in grasp planning and which also introduces an
opportunistic component. A system, which incorporates
this mechanism, and an analysis thereof is presented
within the next few sections. Section 2 provides some
background information for the rating system and for the
exploratory procedure used. Section 3 will discuss the sys-
tem architecture and indicate how the system was imple-
mented. The experimental results are presented in section
4, while the analysis is left to section 5. Section 6 presents
the conclusions and section 7 discusses possible future
work.

2  Background Information

The rating system and the exploratory procedure used are
going to be explained in more details in the next two sub-
sections.

2.1  Rating System

The Bayesian Formalism makes it possible to reason in the
presence of uncertainty and the manner in which probabi-
listic knowledge is dealt with can be used to draw a paral-
lel between this probabilistic notion and the proposed
rating system.

If we let P(Bi) be the probability of sub-rating, Bi, occur-
ring, then we can also look at P(Bi) as a weighting of the
sub-rating Bi. Also, if we let A be an agent, then P(A,Bi) is
the probability of both A and Bi occurring at the same
time. One of the basic Bayesian axioms says that, given a
set of n mutually exclusive variables, Bi, then the probabil-
ity of the variable A, P(A), can be calculated from the
probability of A and Bi, P(A,Bi) [9],

(1)

Then, using Bayes’ Rule, P(A,Bi) can be calculated by:

P A( ) P A Bi,( )( )
i
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(2)

where P(A|Bi) is the probability that A will happen given
Bi or P(A|Bi) can be the rating of an agent A with respect
to sub-rating Bi. Two requirements are imposed on Equa-
tion (2):

(3)

Combining equations (1) and (2),

(4)

Continuing the parallel, P(A) in Equation (4) represents
the total rating of agent A.

The agents could be given arbitrary ratings from the start,
but this would not allow the opportunistic nature of the
system. However, this type of assigned rating is not of
total lack of use, because a pre-defined rating could pro-
vide a default for the system and there is a certain compo-
nent of the rating which can be made to be opportunistic.
As a result, part of the rating can be made to be influenced
by the state of the system.

We have shown how Equation (4) can be used to combine
several competing sub-ratings into one. Now, the next
question that we must answer is “How many types of sub-
ratings are required?” Assuming that there are “m” agents
and n sub-ratings,

(5)

Therefore, for every agent, “n” multiplications are
required. With “m” agents, a total of “mxn” multiplica-
tions are require each cycle for the rating calculation
alone. Furthermore, if we have “n” agents (i.e. m = n) and
“n” sub-ratings, then we need a total of “n2” multiplica-
tions are required every cycle. Consequently, the lower
“m” is, the less number of multiplications are required.
However, we are not just talking about computing time. If
we use the idea of agents rating each other, as in [4] and
[11], then we end up with “n” agents and “n” sub-ratings.
By interweaving all agents in this manner, it would make
the addition or deletion of agents to the system hard to
accomplish. Any such changes would call for a complete
redesign of the ratings systems of every agent. As a result,
much flexibility and all modularity is lost.

The main disadvantage of this is that the calculations can
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become very lengthy. In addition, this would cost the EOS
its modularity and flexibility. By interweaving all agents in
this manner, it would make changes to the system hard to
accomplish. Any addition or deletion of agents would call
for a complete redesign of the ratings system of every
agent.

Thus, a more realistic number of sub-ratings must be
defined. Here we are proposing a more realistic number of
sub-ratings would be three. One of the sub-ratings could be
a fixed, default value. The second can be a variable, oppor-
tunistic sub-rating which changes as a function of the state
of the planner. Finally, the third could be a “Learned” rat-
ing. The “Learned” rating would be a parameter which
gets updated constantly and can be specific type of object
to be grasped or a particular orientation of the object to be
grasped. In this paper only the first two types of sub-rat-
ings will be discussed.

Two sub-ratings give more flexibility than one, yet the
architecture is maintained relatively simple. For example,
let the default sub-rating of agent j be P(Aj|Bd), and the
opportunistic sub-rating be P(Aj|Bo). Then, the overall rat-
ing for each agent j can be P(Aj), after combining the sub-
ratings with respect to the pre-defined default weighting
factor P(Bd), and opportunistic weighting factor P(Bo) as
indicated in equation (6).

(6)

Note that while the sub-rating values are agent specific, the
weighting factors are not. The following is an example of
such a system:

Let's say that we have four agents, [Agent1, Agent2,
Agent3, Agent4], and believe that we have equal confi-
dence in their default sub-rating and in the opportunistic
sub-rating, then the weight of the default rating and the
weight of the opportunistic rating will each be 0.50. If the
default, P(Aj|Bd), and opportunistic, P(Aj|Bo), sub-ratings
of the agent Aj (where Aj is one agent and ), are as
indicated in Table 1, then, using Equation (6) the total rat-
ing of Agent1 is calculated as follows:

(7)

Consequently, the total rating of the agents is as shown in
Table 1.

P Aj( ) P Aj Bd( ) P Bd( )× P Aj Bo( ) P Bo( )×+=

1 j 4≤ ≤

P Aj Bd( ) P Bd( )× P Aj Bo( ) P Bo( )×+

0.90 0.50 0.00 0.50×+×=
0.45=

As a result, Agent2 has the highest rating among the four
agents.

The default sub-rating, P(Aj|Bd) is assigned to each agent
at the time of creation of the agent. It is a fixed value
throughout the program execution.

The opportunistic sub-rating, P(Aj|Bd), will be re-set with
each cycle. A cycle consists of the determination by the
controller of the agent whose action is to be executed and
the execution of that action. In any given cycle, the agent
which executes its action may also change the sub-rating
of any other agent, depending on the current status of the
system. The sub-rating of an agent may also be modified at
the time of each agents preconditions are tested. This
allows the agents to take advantage of sensory informa-
tion.

The opportunistic sub-rating need not be determined in the
same way every time. One of the better ways of determin-
ing what the opportunistic rating should be is to make the
rating a function of the system status. For example, when
the robotic hand is about to grasp the object, after having
executed one or more exploratory procedures, the system
may choose to bring the hand closer in to the object (i.e.
actuate the wrist), or to close the fingers to grasp the object
(i.e. actuate the joint angles of the fingers). In this case, the
choice is to be determined by the ratio of the estimated
diameter of the object to the maximum vertical span that
the robotic hand can achieve. If the object is relatively
small, then it is necessary to bring the hand, closer to the
object, so as to ensure that the object is not missed when
the fingers are actuated. If the object is relatively large,
then the fingers can be actuated so that they can grasp the
object, without having to worry about missing the object.
If the ratio is greater than one, then the object is deter-
mined to be too big to grasp. Consequently, the ratio is
always less than 1. This ratio can then be used as the
opportunistic sub-rating value for the joint angle actuation
agent, and the complement of the ratio can be used as the
value for the opportunistic sub-rating of the wrist agent.
This is one example how the rating of an agent can be
influenced by the current state of the system.

Table 1: Rating System (P(Bd) = 0.5; P(Bo) = 0.5)

Aj P(Aj|Bd) P(Aj|Bo) P(Aj)

Agent1 0.90 0.00 0.45

Agent2 0.60 0.80 0.70

Agent3 1.00 0.20 0.60

Agent4 0.40 0.50 0.45



2.2  EP1
The haptic exploration investigated is that of a rolling fin-
ger on the surface of the object which was defined as EP1
by Charlebois et al. [1]. There is an EP2 which adds on to
the shape estimation capabilities of EP1, however, its
implementation was left for future work.

EP1 can be used to identify spherical or flat surfaces. It is
executed by slightly rolling the robot finger in the neigh-
bourhood of the contact point on the object. The rolling
must be done at a known and constant angular velocity
around a fixed axis in the instantaneous contact frame.
This curvature estimation method is based on the follow-
ing equation:

(8)

where,

p = contact point on probe in [u,v] direction
M = fingertip metric
K1 = curvature form of fingertip(known)

= curvature form of the object in contact with
the fingertip

[ωx, ωy] are angular velocities of the fingertip's
contact frame w.r.t. the object's contact
frame around the x and y axes

[vx, vy] are the linear velocities of the fingertip's
contact frame w.r.t. the object's contact
frame in the x and y directions ([vx, vy, vz]
= [0,0,0] without slippage)

 can be solved for and the diagonal elements of  give
the normal curvatures in the u and v directions.

(9)

The type of information which can be retrieved about an
object with EP1 is the surface curvature, radius (r), of the
object at a point on the object.

(10)

This information can then be used to reconstruct the object
and estimate grasping points on the object.

The complement of the relative error between the real and
the estimated value of the radius can be used as an oppor-
tunistic rating for the agent which executes the EP1. Thus,
if the error is small than EP1 is going to be executed less
often than when the error is large.

The exploratory procedures are implemented as agents of
the EOS and as a result they will be subject to the rating
system added on to agents. For example, the sub-rating is
influenced by the system being in the “info” state and by
lack of knowledge about the object. As long as the object
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shape cannot be postulated with at least a 60% confidence,
while in the “info” state, EP1 will be called on repeatedly.

3  System Architecture

Similarly to the Blackboard architecture, the EOS com-
prises mainly of three types of structures: the controller
(C), the agents (A), and the information board (IF). Figure
1 shows the information/data flow among the different
components which make up the EOS.

Figure  1 : The EOS Architecture

This system has been implemented mainly in PROLOG
with the exception of the C subroutines which simulate the
EP1 execution.

The EOS has three stages: search, information, and grasp-
ing. The first stage is concerned with locating the object in
a three dimensional space of given dimensions. Once the
object has been located, the information stage ensures that
enough data is gathered about the object so that the system
has a good idea of what the object is. Once the object has
been (partially) identified, then the grasping stage deals
with going about and getting a grasp on the object.

The agents each take the current situation under consider-
ation and independently suggest a possible course of
action. Each agent is implemented as a module within
PROLOG.

Currently, the system consists of eight agents: end, fin-
ger1, finger2, finger3, wrist, ep1, post_shape, grasp_-
points. The agents are restricted to participate only during
certain stages. The reason for this is to reduce the number
of useless “suggestions” made by the agents. For example,
the ep1 agent will only participate during the stage of
information gathering, so there is no reason to waste
resources calculating a rating for this agent during the
search or grasping stages. Similarly with the post_shape
agent, which postulates the shape of the object given the
gathered information.

The controller’s decision is a function of the total rating of
each agent in a cycle. Given that each agent can produce a
rating for itself, currently, the controller simply chooses
the agent with the highest rating.
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4  Experimental Results
As mentioned in Section 3, the system runs according to
three stages. Consequently, a typical scenario involves the
robotic hand starting off at a given location in space and
trying to locate the object. This is a random search in
which the direction [+x, -x, +y, -y, +z, -z] is picked ran-
domly, and so is the step size taken in the chosen direction.
Once the object is located, the system will try to get the
robotic hand to identify the object by executing the EP1 on
the object. If the confidence in the results of the procedure
are high, then the robotic hand will attempt to grasp the
object. The type of grasp used in this system is the preci-
sion grip [3]. The precision grip is a type of grasp in which
only the fingertip of each finger is in contact with the
object. Both sub-rating weighting factors were 0.50.

The analysis of the EOS was performed in two parts: a)
Compare the absence vs. the presence of the variable sub-
rating component, so as to establish whether the conjunc-
tion of the two sub-ratings is valid; b) Investigate the
resultant grasps of the EOS.

4.1  Default vs. Opportunistic Sub-rating
We assigned a 1.0 weighting factor to the default sub-rat-
ing and a 0.0 weighting factor to the opportunistic sub-rat-
ing and the EOS executed each of the [finger1, finger2,
finger3, wrist] agents once and stopped. These agents were
all allowed to contribute during the search stage.

Next, a 0.0 weighting factor was assigned to the default
sub-rating and a 1.0 weighting factor was assigned to the
opportunistic sub-rating. The EOS made it through the
search and information stages correctly, but stopped dead
when it reached the grasp state.

4.2  The EOS Resultant Grasps
The grasps which this systems aims for is a precision grip.
In addition, since only spheres where tested in this prelim-
inary stage, the goal was to achieve a “good” grasp where
the fingers make contact with the sphere about its diameter.
Figure 2 shows what is referred to by the term “good”
grasp. However, as long as the fingertips of the three fin-
gers made contact with the sphere, the grasp result was
included in Figure 3. If the described grasp was not
achieved, then the data point was not included in the grasp.

Figure  2 : “A Good Grasp”
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The robotic hand consists of three fingers and each finger
has three links. All links have the same length. The num-
ber of grasp cycles were noted as a function of the ratio of
the diameter of the object to the height of the robot hand.
The height of the robot hand is defined as the vertical dis-
tance between the upper two fingers and the bottom finger.
The reason for using the ratio was to be able to compare
the data on an even basis. Figure 3 shows a summary of
that data.

Figure  3 : Object Diameter to Hand Height Ratio
vs. Grasp Cycles

5  Analysis
As seen in section 4.1, neither the default nor the opportu-
nistic sub-rating function well independently. The default
sub-rating simply pre-defines the order of executing
agents. Consequently, this sub-rating alone provides no
flexibility.

On the other hand, even the flexible, opportunistic sub-rat-
ing was not self-sufficient. The fact that the system got
through the search and information stage is purely coinci-
dental. At the beginning, of a new stage all opportunistic
sub-ratings are zero. Consequently, the controller will
select the first agent in the list. If this agent is an appropri-
ate one to select at the time, it may help invoke the oppor-
tunistic nature. However, if the agent selected does not
know what to do in the given situation, than the program
will terminate.

At the beginning of the search stage, the “finger1” agent
was chosen. This agent happened to know what to do, the
search stage proceeded as usual. The information stage
was lucky as well, because the “ep1” agent was executed
by virtue of being the first in the list, which then provided
some information for the “post_shape” agent to ponder on.
However, the same luck did not occur during the grasping
stage. “finger1” agent was picked again to start off and this
time the agent did not know where to begin, as it did not
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have enough information.

Consequently, we have seen that only one of the sub-rat-
ings is not enough to have a working, opportunistic sys-
tem. As a result of this experiment, we have discovered an
emergent role for each of the sub-ratings. The opportunis-
tic sub-rating is the driving force which gives the system
its flexibility, however, the default sub-rating is required to
give the system its stability.

The experiment results shown in section 4.2, indicate that
as the ratio of the diameter of the object to the height of
the hand increases, the number of cycles required to com-
plete a grasp decreases. This result can be explained by the
method in which the grasping state was implemented.
Once the system believes that it has enough information
about the object, it tries to grasp the object. At this time it
must choose among four agents, [finger1, finger2, finger3,
wrist]. If the finger agents are selected, then the joints of
the corresponding finger are actuated by a small amount. If
the wrist gets chosen, then the robot hand will move a little
closer to the object. The reason for this is that for small
objects, the wrist has to be closer to the object so that the
object is not missed as the joints are actuated. Conse-
quently, if an object is relatively large, the fingers need
only be actuated a few times until the precision grasp is
achieved. However, for small objects, the finger and wrist
agents take turns, making their way to the object slowly,
but surely.

6  Conclusions
This paper has introduced a novel rating system for the
agents of a multiagent modular system. The multiagent
system designed is an inclusive type of system, which
encompasses all grasp planning strategies. The rating
scheme is based on both default and opportunistic knowl-
edge. As the experiments have shown, the use of both
types of knowledge vs. the use of either of the types of
knowledge alone is the difference between a system which
works vs. one that does not. A system that works can com-
plete all three stages of the task and exit gracefully
whether the resultant grasp has been successful or not. We
have also shown, that the ratio of the diameter of object to
the hand height is inversely proportional to the number of
grasping cycles required to complete the grasp. This result
is due to the manner in which the opportunistic sub-rating
is evaluated.

7  Future Work
The addition of another exploratory procedure will be pur-
sued. EP2 is executed by dragging three fingers across the
surface of the object. By doing so over a large surface, the
surface can be approximated with a small number of sam-
pled points.

The third sub-rating, which was left out in this paper, can
be added on to the rating system. This sub-rating repre-
sents the “learning” effect. For example, if the system
detects that the current object being explored is similar to
another object which was previously explored, then the
system can use the learned sub-rating to influence the
coarse of action so that the grasp which was previously
used can be tried out on the current object, thus achieving
the grasp in a fewer number of cycles.

Currently, the controller selects the agent with the highest
rating,. A future possibility is for the controller to select
the agent in the presence of higher goals or other higher
level information, Info1 and Info2. In this case, the con-
troller would need to have a means for further screening
the agents, A, B, and C, using the ratings of the agents as
inputs to its screening mechanism.

The screening mechanism alluded to in the previous para-
graph can also be devised from the ideas of a Bayesian
Network (BN). In this case, an actual layout of the BN
may need to be drawn to establish the relationship
between inputs, [A, B, C, Info1, Info2], and outputs, [X, Y,
Z]. Figure 4 illustrates a simple two-stage BN:

Figure  4 : Controller Screening Mechanism

Thus the controller would now pick the action which max-
imizes one of the outputs, X, Y, or Z.

Another possible direction for future work may be to look
into the utility of giving the controller the ability to modify
the weights of the types of sub-ratings, either on a per
agent basis or on the whole.
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